INVENTARIO DELLE FAGLIE ATTIVE TRA I Fiumi Po e Piave e il Lago di Como (ITALIA SETTENTRIONALE)

D. Castaldini - M. Panizza
Istituto di Geologia, Università di Modena

RIASSUNTO - Inventario delle faglie attive tra i fiumi Po e Piave e il lago di Como (Italia Settentrionale). Il Quaternario, 4(2), 1991, p. 333-408. - Viene illustrato l'inventario delle faglie attive, nel settore dell'italia Settentrionale compreso tra i fiumi Po e Piave e il lago di Como e nell'intervallo di tempo compreso fra il Pleistoceno medio e l'Olocene (da 700.000 a. P. ad oggi). Una prima parte della pubblicazione offre una panoramica storica delle formazioni di faglia attiva proposte dalla letteratura geologica, illustra la definizione qui adottata ed espone i criteri applicati nella preparazione dell'inventario. Questo è stato realizzato sulla base di una dettagliata e puntuale analisi della bibliografia neotettonica, attraverso le seguenti fasi: selezione preliminare delle faglie, ricerca bibliografica sulle singole faglie, elaborazione di una "Carta delle faglie attive", schedatura delle faglie. In particolare, la "Carta delle faglie attive" è stata redatta alla scala 1:500.000: in essa sono riportate le varie faglie numerate, classificate in "attive" e "ritenute attive" e suddivise in "affioranti" e "coperte". Le schede riportano, per ciascuna faglia, o gruppi di faglie, l'ubicazione, il nome, la bibliografia neotettonica, il tipo di faglia, la giacitura, il rigetto, la lunghezza, i dati qualificanti per la valutazione, l'intervallo di attività, la classificazione, il grado di attività (determinato dal rapporto tra il rigetto e l'intervallo di attività) suddiviso in tre categorie, e le eventuali note. In totale sono state schedate e rappresentate in carta, 144 faglie di cui 24 sono risultate " Attive" e 120 "Ritenute Attive". Gli Autori analizzano anche la distribuzione e le caratteristiche delle faglie inventariate ed elaborano una "Carta del grado di attività". Da essa emerge che nell'area orientale le maggiori strutture denotano un grado di attività di III categoria (tasso di spostamento medio tra 1 e 0,1 mm/anno) mentre nell'area gardesana si individuano dislocazioni con grado di attività sia di II che di III categoria (tasso di spostamento medio minore di 0,1 mm/anno); localmente si riscontra uno spostamento medio maggiore di 1 mm/anno (grado di attività di I categoria). Rapportando questi dati ai più recenti lavori di neotettonica, gli Autori risalgono che i rilievi isolati dell'alta pianura bresciana non facciano parte del settore neotettonico prealpino, che il grado di attività del settore a Nord del L. di Garda sia stato sottostimato negli studi di dettaglio per mancanza di sicuri markers di riferimento per la datazione dell'attività delle faglie e che nel bacino dell'Adda e nelle Dolomiti, l'attività tettonica oloocene sia più diffusa di quanto sinora indicato. Inoltre mettono in evidenza la necessità di studi più uniformi, dettagliati e maggioremente integrati fra le diverse discipline che si occupano di neotettonica. Infine ritengono indispensabile la realizzazione di una banca dati sugli elementi tettonici attivi di cui questo lavoro rappresenta un primo contributo.

ABSTRACT - Active faults inventory between the Po and Piave rivers and Como lake (Northern Italy). - Il Quaternario, 4(2), 1991, p. 333-408. - This paper illustrates the inventory of active faults located the sector of Northern Italy between the Po and Piave rivers and lake Como and which pertain to the interval ranging from the Middle Pleistocene up to the Holocene (700,000 B.P. to the Present). The first part of the paper reviews the various definitions of "active fault" in the geological literature, explains the definition adopted here, and specifies the criteria applied in the inventory. The basis for the inventory consists in a detailed and accurate analysis of the neotectonic literature according to the following stages of research: preliminary fault selection, bibliographic research on the individual faults, compilation of a "Map of active faults" and of the fault data sheets. The "Map of active faults", on the scale of 1:500,000, contains the various faults which have been numbered, classified as "active" or "held to be active" and subdivided into "outcropping" or "buried". The data sheets for each fault or group of faults contain information on the location, name, neotectonic references, fault-type, attitude, displacement, length, trace features, period of activity, classification, degree of activity (determined by the average slip rate) according to three classes, and any additional notes. Overall, 144 faults were inventoried and mapped; 24 were classified as "active" and 120 as "held to be active". The Authors also analyze the distribution and features of the faults inventoried and present a "Degree of activity map". One may observe from the map that the major elements in the eastern area showed a Class II degree of activity (average slip rate ranging from 0.1 to 1 mm/year). In the Garda sector, the faults identified were found to have both Class II and Class III degrees of activity (average slip rate of less than 0.1 mm/year). In both sectors, an average slip rate greater than 1 mm/year (Class I degree of activity) was observed locally. After comparing these data with the findings of the most recent neotectonic studies, the authors conclude that the isolated reliefs in the upper part of the Brescia plain are not part of the pre-Alpine neotectonic sector and that the degree of activity in the area North of lake Garda has been underestimated in detailed studies due to the absence of definite markers for dating fault activity. Furthermore, the authors also consider the Holocene tectonic activity in the Adda river basin and in the Dolomites to be more widespread than has been indicated as yet. In addition, the Authors stress the necessity for more detailed and standardized studies that are also more coordinated with the various disciplines dealing with neotectonics. It is indispensable that a data bank be established for the collection of data on active tectonic elements; this study is intended as a first step in that direction.

Parole chiave: Italia Settentrionale, faglia attiva, Pleistocene, Oloocene
Key-words: Northern Italy, active fault, Pleistocene, Holocene

1. PREMESSA
Con il contributo delle ricerche indicate sono stati elaborati vari modelli neotettonici e/o geodinamici (per
l'area oggetto del presente studio: Panizza et al., 1981; Cavallin & Giorgetti, 1982; Cavallin et al., 1984; Slezko et al., 1986; 1987; 1989; Ogniben, 1987).

Nella seconda metà degli anni '80 gli studi di neotettonica hanno ricevuto un nuovo impulso nell'ambito di progetti scientifici nazionali (Progetto Nazionale del Ministero P.I. "Morfoneotettonica") o di Gruppi di lavoro coordinati (Morphotectonics Working Group dell'I.G.U.) oppure nel quadro di ricerche a scopo applicativo (ENEL, 1988), che hanno portato ulteriori contributi di novità per la conoscenza del territorio nazionale italiano dal punto di vista neotettonico.

Fig.1 - Ubicazione dell'area di studio. 1) limite dell'area del presente studio (tutta l'area è studiata in CNR, 1983); 2) area studiata in CNR (1980) (i settori delle Dolomiti e dei M.Lessini anche in CNR, 1978); 3) area studiata in CNR (1982) (il settore del L. di Garda anche in CNR, 1979); 4) area studiata in Zanferrari et al. (1982) (il settore tra il L. di Garda e il M.Grappa anche in Panizza et al., 1981); 5) area studiata in Slezko et al. (1987) e Ogniben (1987); 6) limite dell'area studiata in ENEL (1988); 7) limite dei rilievi.

Location of the study area. 1) study area boundary (the overall area is examined in CNR, 1983); 2) area examined in CNR 1980 (The Dolomites and Lessini M. sectors also examined in: CNR, 1978); 3) area examined in CNR (1982)(Lake Garda sector also examined in CNR, 1979); 4) area examined by Zanferrari et al. (1982) (The sector between Lake Garda and Grappa M. also examined by Panizza et al. 1981); 5) Area examined by Slezko et al (1987) and Ogniben (1987); 6) area examined in ENEL (1988) boundary; 7) relief border.

Gli scrittori, che hanno lavorato ai progetti di ricerca precedentemente citati, rilevano la necessità, importante ai fini sia prettamente scientifici che applicativi, di procedere ad un "inventario" degli elementi tettonici attivi del territorio nazionale.

Il presente lavoro ha lo scopo di proporre l’inventario delle "faglie attive" nel settore dell’Italia Settentrionale compresa tra il Po a Sud, il Lago di Como ad
Ovest, il Fiume Piave ad Est\(^{(1)}\). La ricerca è stata condotta sulla base del materiale bibliografico e attraverso l'elaborazione di schede e di una carta a scala 1:500.000.

Si precisa che non sono state fatte verifiche sul terreno e quindi la responsabilità della validità dei dati caratterizzanti le faglie inventariate è lasciata interamente a coloro che li hanno raccolti e segnalati.

L'area studiata presenta zone a diversa evoluzione neotettonica plio-quaternaria, differenti situazioni geologiche e geomorfologiche e, soprattutto, aree indagate con un diverso dettaglio interpretativo (Fig. 1).

Dalla Figura 1 risulta chiaramente come ad aree relativamente poco studiate sotto l'aspetto neotettonico (settore occidentale) se ne contrappongono altre studiate con estremo dettaglio (zona tra Vicenza, Mantova, il L. di Garda e Trento); ovviamente tale disparità di indagine ha condizionato la segnalazione di evidenze di tettonica attiva. Si ricorda che la compilazione di una "Carta delle faglie attive", oltre ad essere importante da un punto di vista applicativo (p.es. per la localizzazione di costruzioni ad alto rischio come centrali nucleari, dighe, impianti chimici, depositi di rifiuti radioattivi) è anche l'obiettivo, a scala mondiale, del progetto internazionale "World Map of Active Faults" (Trifonov, 1990).

2. DEFINIZIONE DI "FAGLIA ATTIVA"

Come noto, esistono molteplici definizioni di "faglia attiva" anche perché si tratta di un problema di notevole interesse in campo applicativo. Sulla definizione di faglia attiva si è tenuta una tavola rotonda in occasione del già citato Colloquio di Neotettonica di Orleans da cui è nato il termine "faglia attiva" è usato per indicare faglie che si sono mosse ripetutamente in tempi geologici recenti o che hanno possibilità di movimenti attuali o futuri; si nota inoltre che l'età limite del movimento varia dall'Autore a dagli scopi del lavoro.

Nel presente lavoro la "faglia attiva" viene adottata la definizione proposta da Castaldini et al., (1988) (in cui il termine "faglia attiva" si riferisce ad un particolare "elemento tettonico attivo", nel senso di Panizza & Castaldini, 1987, Panizza, 1988). La "faglia attiva" è descritta come un movimento che avviene in un periodo di tempo sufficientemente lungo per permettere la formazione di una serie di faglie di movimento tettonico attivo, e che ha la possibilità di continuare nel tempo.

Il termine "faglia attiva" è usato per indicare faglie che si sono mosse ripetutamente in tempi geologici recenti o che hanno possibilità di movimenti attuali o futuri; si nota inoltre che l'età limite del movimento varia dall'Autore a dagli scopi del lavoro.

La distinzione tra "attiva" e "ritenuta attiva", come già osservato in Castaldini & Panizza (1988), è finalizzata a porre dei limiti ben precisi e meno soggettivi possibili al concetto di attività "certa" o "probabile" che compare nelle varie pubblicazioni di neotettonica.

\(^{(1)}\) Si precisa che l'area di pianura considerata è ubicata a Nord delle pieghe appenniniche sepolte della Pianura Padana.
CARTA DELLE FAGLIE ATTIVE
fra i fiumi Po e Piave e il lago di Como (Italia Settentrionale)

MAP OF ACTIVE FAULTS
between the Po and Piave rivers and lake Como (Northern Italy)
D'altronde, come noto, il grado di attendibilità, per quanto riguarda l'attività dei diversi elementi neotettonici, è differente in funzione dei diversi contesti geologici in cui essi si collocano. Si passa, per esempio, da faglie in visibile rapporto con depositi quaternari, la cui attività è stata direttamente comprovata, a faglie, visibili unicamente a livello di formazioni mesozoiche per le quali le indicazioni di attività recente sono state ricavate sulla base di indizi prevalentemente a carattere geomorfologico, oppure a faglie sepoltte nel bacino padano la cui presenza ed eventuale attività può essere valutata solo sulla base dei dati forniti da profili sismici e/o perforazioni.

Pertanto, secondo la definizione proposta, l'intervallo di attività del termine "faglia attiva" può essere di volta in volta precisato secondo le necessità e gli scopi del lavoro.

Nella presente pubblicazione il periodo in cui si sono verificati i principali movimenti neotettonici considerati va dal Pleistocene medio all'Olocene compresi, cioè da 700.000 a. p. a oggi. La scelta di questo intervallo di tempo è stata dettata dalla constatazione che il Pleistocene medio - Olocene risulta un periodo ben definito (cfr. ad esempio CNR, 1980, 1982; Panizza et al., 1981; Slejko et al. 1987(2); ENEL, 1988).

Una ulteriore considerazione va riferita alle "faglie da terremoto" (o "surface faults"). Come noto, lo spostamento lungo una faglia avviene istantaneamente (associato ad un evento sismico) o lentamente (per "creep"). In Giappone gli studi sulle "faglie da terremoto" hanno indicato che la maggior parte di esse si riscontrano in corrispondenza di preesistenti faglie attive (cfr. R.G.A.F.J., 1980, p. 63). Da ciò si deduce che le faglie attive possono muoversi in occasione di futuri terremoti. Queste considerazioni puntualizzano l'inserimento nel presente lavoro delle faglie da terremoto e sottolineano ancora l'importanza di un inventario delle faglie attive.

3. MODALITA' E CRITERI DI REALIZZAZIONE DELLA CARTOGRAFIA E DELLA SCHEDATURA DELLE FAGLIE ATTIVE

L'inventario delle faglie attive è stato realizzato attraverso l'elaborazione di una "Carta delle faglie attive" (Tav. 1) e la schedatura delle caratteristiche delle singole faglie (vedere Appendice).

Tale operazione è stata effettuata attraverso le fasi ed i criteri qui di seguito precisati.

(2) Con la dicitura Slejko et al. (1987) si intendono e si intendono nelle citazioni successive anche Slejko et al. (1986) e Slejko et al. (1989) poiché i dati neotettonici riportati sono gli stessi e più esauniti. Inoltre gli aggiornamenti apportati in Slejko et al. (1989) riguardano soprattutto l'area ad oriente di quella indagata nel presente studio.
indicassero la loro attività.

Sono state riesaminate anche le faglie che risultavano tracciate solo sulla base di evidenze morfologiche, senza precisi riscontri geologici.

In questa fase, sono state altresì collocate nella loro giusta ubicazione alcune faglie che dal confronto tra CNR (1983) ed i lavori originali di dettaglio apparivano chiaramente spostate (p.es. alcune descritte in: Forcella et al., 1982).

Per quanto concerne elementi non presenti nella Carta Neotettonica d'Italia (CNR, 1983), sono stati riportati quelli che la bibliografia successiva riconosce attivi sulla base di criteri geologico-morfologici oltre, eventualmente, a dati di altro tipo, stratigrafici, geofisici, sismologici etc.

I riferimenti sismologici però, pur ben consci che i terremoti sono una manifestazione collaterale dell'attività tettonica, se indicati come unici dati di attività, non sono stati ritenuti sufficienti poiché molto spesso non risultava ben documentata l'attività sismica della linea in questione. Non sono così ad esempio state inventariate la "Linea del Dosso del Vento" tra il F. Chiese e l'alto L. di Garda (sismicamente attiva secondo Venzo, 1983), la "Linea di Brescia" (sismicamente attiva secondo Berrutti, 1983) e la "Linea di Ballino" (sismicamente attiva secondo Slejko & Rebez, 1988).

Si vuole infine ricordare tra i lavori consultati anche quelli di Baroni & Veronesi (1989) e di Castiglioni et al. (1988) poiché anche se nessuna faglia risultà ad essi riferita, forniscono un quadro di sintesi neotettonica, rispettivamente, del bresciano e delle Prealpi venete.

Per quanto riguarda le faglie successive a CNR (1983) la trasposizione dai lavori originali alla "Carta delle faglie attive" (Tav. 1) non è sempre risultata facile, soprattutto se le nuove faglie erano rappresentate in carte con scarsi riferimenti topografici o in elaborati a notevole diversità di scala. Comunque, in considerazione della finalità del presente lavoro, eventuali errori di trasposizione grafica sono da ritenere accettabili.

3.3 Elaborazione della "Carta delle faglie attive"

Per quanto illustrato in precedenza, la "Carta delle faglie attive" (Tav. 1), elaborata a scala 1:500.000, deriva dalla revisione critica di CNR (1983), con l'aggiunta di faglie segnalate successivamente.

Nella "Carta delle faglie attive" i vari elementi sono numerati e riportati secondo il loro sviluppo lineare, senza indicazione del tipo di movimento poiché in molti casi le indicazioni bibliografiche risultano controversie.

Gli elementi non cartografabili (di dimensioni lineari < 1 km) sono indicati con un simbolo puntiforme.

Le faglie sono distinte in "Active" e "Ritenute Attive" (cfr. definizione nel § 2); esse risultano inoltre distinte in "affioranti" e "coperte", secondo la terminologia già adottata in CNR (1983) e Slejko (1987).

I sistemi di faglie, ove possibile, a differenza di quanto indicato in CNR (1983) ove risultano spesso semplificati, sono stati riportati nel loro complesso (p.es. sistema della Faglia di Malo, n. 59, e sistema del Colle S. Bartolomeo di Salò, n. 98).

3.4 Schedatura delle faglie

Le faglie riportate nella "Carta delle faglie attive" sono state analizzate dettagliatamente da un punto di vista bibliografico e schedate (vedere Appendice), indicando per ciascuna o, quando non possibile, per gruppi le caratteristiche significative di seguito elencate (v. scheda di Fig. 2).

3.4.1 Numero faglia

Corrisponde al numero d'ordine indicato nella "Carta delle faglie attive".

3.4.2 Ubicazione

In questa colonna sono indicati il numero/i dell'i Foglio/i dell'Istituto Geografico Militare (IGM) a scala 1:100.000 (Fig. 3) in cui ricade la faglia (o gruppo di faglie) e il nome delle località più significative ubicate in prossimità dell'elemento in oggetto. In alcuni casi i toponimi sono gli stessi indicati dagli Autori, in altri sono stati ripresi dalla base topografica di CNR (1983).

3.4.3 Nome della faglia

Si tratta del nome dell'elemento così come risulta, se indicato, nella bibliografia consultata. Se non indicato, nella collonna figura il simbolo (-).

Lo stesso simbolo è utilizzato in tutte le "voci" (giacitura, rigetto, etc.) che non è possibile compilare perché non indicate in bibliografia.

3.4.4 Bibliografia neotettonica

In questa colonna sono elencati i riferimenti bibliografici delle varie faglie. Tali riferimenti sono espressi con un numero tra parentesi che trova corrispondenza con la numerazione progressiva attribuita alla bibliografia del presente lavoro.

Si specifica, ancora una volta, che la ricerca bibliografica è stata effettuata quasi esclusivamente su pubblicazioni a carattere neotettonico e che pertanto i riferimenti bibliografici sono esaustivi solo in riferimento a questo settore delle Scienze della Terra. Sono stati altresì presi in considerazione ed indicati i lavori, di altri settori, contenenti dati ritenuti significativi al fine di definire l'attività degli elementi inventariati (p.es. dati geodetici).
<table>
<thead>
<tr>
<th>N° Faglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Località</td>
</tr>
<tr>
<td>Nome della faglia</td>
</tr>
<tr>
<td>Bibliografia</td>
</tr>
<tr>
<td>Tipo di faglia</td>
</tr>
<tr>
<td>Giacitura</td>
</tr>
<tr>
<td>Dati qualificanti per la valutazione</td>
</tr>
<tr>
<td>Intervallo di attività</td>
</tr>
<tr>
<td>Classificazione</td>
</tr>
<tr>
<td>Note</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F.G.M.</th>
<th>Location</th>
<th>Name of the fault</th>
<th>References</th>
<th>Type of fault</th>
<th>Attitude</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strike</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 - Scheda per l'inventario delle faglie attive. n = non determinabile; (·) = non indicato; v = verticale e sub-verticale; o = orizzontale; A = Faglia Attiva; rA = Faglia Ritenuta Attiva.

Active faults inventory sheet. n = undefined; (·) = not indicated; v = vertical and sub-vertical; o = horizontal; A = Active fault; rA = Fault held to be active.
3.4.5 Tipo di faglia

Viene qui indicato il tipo di faglia con l’indicazione del tipo di movimento neotettonico.

Poiché per una stessa faglia possono essere presenti evidenze di movimenti di tipo diverso legati a momenti evolutivi differenti, in teoria sarebbe stato opportuno separare l’indicazione del “tipo di faglia” dall’indicazione del “tipo di movimento”. Praticamente però nell’ambito della ricerca bibliografica effettuata non sono stati riscontrate segnalazioni di questo tipo, anche per la relativa brevità dell’intervallo di tempo qui considerato e tale distinzione non è stata effettuata. Tuttavia quando il movimento manifestato nel Pleistocene medio - Oocene risultava contrastare con le caratteristiche geometriche dell’elemento stesso, è stato indicato nelle note. In generale comunque va osservato che il “tipo di faglia” è un dato che spesso è risultato controverso poiché, ad esempio, le caratteristiche indicate nei primi lavori del P.F. Geodinamica - S.P. Neotettonica (CNR, 1978; 1979; 1980; 1982; Zanferrari et al., 1982) risultano a volte discordanti con quanto indicato nei lavori più recenti (CNR, 1983, Sleijko et al., 1987). In altri casi lo stesso elemento è stato valutato dai vari Autori con diverse caratteristiche. Esempi di queste controversie sono la Linea della Valsugana, faglia n. 29, la Linea Schio - Vicenza, faglia n. 58, e gli elementi dell’area gardesana. In presenza di dati discordanti, le varie opzioni sono state riportate nella colonna delle note.

3.4.6 Glacitura

In questa colonna vengono fornite direzione, immersione ed inclinazione della faglia. La direzione, quando non esplicitata nelle note relative, è stata ricavata dai documenti cartografici consultati. L’immersione
e l'inclinazione invece, se non chiaramente indicate o deducibili in bibliografia sono state indicate con il simbolo (i). Per quanto riguarda l'inclinazione, se verticale o sub-verticale è stata abbreviata con "V", se non definibile con "n". Anche per la giacitura, sono possibili riferimenti bibliografici nelle note.

3.4.7 Rigetto

Per quanto riguarda il movimento che si verifica lungo una faglia, appare sottolineare che le differenze tra "scivolamento" e "rigetto". Con il primo termine (in inglese "slip") si intende lo spostamento relativo di due punti omologhi sulle due parti di una faglia misurato sul piano di faglia; con il secondo termine (in inglese "displacement") si intende lo stesso spostamento proiettato su un piano perpendicolare al piano di faglia. Naturalmente in campo neotettonico è possibile nella stragrande maggioranza dei casi valutare il solo "rigetto".

L'ammontare del rigetto è risultato difficilmente preciso: dai soli dati bibliografici, anche perché in genere si trova indicato il rigetto totale dell'elemento considerato, senza ulteriori subdivisioni per intervalli parziali come, nel caso specifico, per il Pleistocene medio - Olocene.

Nella scheda (Fig. 2) l'eventuale rigetto è espresso in metri, e specificato con una sigla: "v" se si tratta di rigetto verticale, "o" se orizzontale, "n" se non è definibile.

Anche per questo dato sono eventualmente indicati, in nota, riferimenti bibliografici particolari.

3.4.8 Lunghezza

Anche questo dato, espresso in km, quando non indicato in bibliografia è stato ricavato dai documenti cartografici consultati. Nel caso di sistemi o di gruppi di faglie, se risultano rappresentati in carta i singoli elementi è stata indicata di questi la lunghezza minima e la lunghezza massima. Se invece il sistema è semplificato in un unico elemento è stata indicata la lunghezza di questo. In vari casi si sono svolte discordanze, relativamente allo sviluppo lineare delle faglie, derivanti spesso dal diverso dettaglio o dal diverso scopo della ricerca.

In questi casi si è optato per la lunghezza riportata da CNR (1983) poiché, come già accennato, documento ufficiale del P.F. Geodinamica - S.P. Neotettonica.

3.4.9 Dati qualificanti per la valutazione

In questa colonna sono stati riassunti i dati qualificanti, di vario tipo, significativi per la valutazione dell'attività delle faglie nell'intervallo neotettonico considerato (Pleistocene medio - Olocene).

In particolare i dati che hanno portato alla qualificazione di "faglia attiva" sono stati evidenziati in corsivo.

Tali dati risultano corredati dal riferimento bibliografico numerico (corrispondente ai lavori citati nel presente lavoro) e dal numero della pagina o delle pagine in cui i dati risultano reperibili. Se i dati riportati nella scheda derivano dal complesso del lavoro indicato, il numero delle pagine non è stato indicato.

Nel caso di più lavori inerenti lo stesso elemento, si è fatto riferimento a quelli con i dati più significativi; nel caso di più lavori dello stesso Autore od Autori, ci si è riferiti a quello più recente o a quello di maggior dettaglio.

Le differenze più rilevanti sui dati qualificanti delle singole faglie sono state riscontrate ovviamente nelle aree maggiormente studiate e riguardano soprattutto le sue caratteristiche geometriche e il periodo di attività. Queste discordi valutazioni sono essenzialmente da imputare alla diversità degli scopi, al diverso dettaglio della ricerca eseguita e al grado di maturazione scientifica della disciplina (cfr. p.es. CNR, 1983 e ENEL, 1988, per l'area gardesana - lessina).

Si precisa che i dati qualificanti per la valutazione sono di vario tipo (geologici, geomorfologici(3), sismologici, stratigrafici, idrogeologici, geodetici etc.) e comunque relativi solo ed esclusivamente ai lavori citati senza nessun contributo fornito dalla eventuale conoscenza diretta degli elementi tetttonici da parte degli scrittori.

3.4.10 Intervallo di attività

In questa colonna è indicato l'intervallo di attività dell'elemento in oggetto a partire dal Pleistocene, poiché tale periodo rappresenta il limite neotettonico inferiore dell'intervallo di tempo preso in considerazione dal P.F. Geodinamica.

Tuttavia, in considerazione delle finalità di questo lavoro, in presenza di dati significativi è stato precisato il periodo di attività più recente nell'ambito dell'intervallo Pleistocene medio - Olocene. Quest'ultima indicazione, quando non espressamente dichiarata in letteratura, è stata dedotta dall'età dei depositi o delle formazioni interessate dalla dislocazione (p.es., se una faglia è stata indicata come direttamente responsabile di fenomeni franosi post-würmiani il suo periodo di attività è stato riferito all'Olocene).

L'indicazione cronologica risulta, nella maggior parte dei casi, accompagnata dal riferimento bibliografico, numerico, da cui è stata indicata o dedotta. Si precisa che in mancanza di lavori di dettaglio si è fatto riferimento ai prodotti originali del S.P. Neotettonica poiché risultano anche da un punto di vista cronologico, sufficientemente dettagliati.

Tale riferimento non è stato riportato nel caso in cui tutti gli Autori concordino circa l'intervallo di attività e, ovviamente, nel caso in cui l'elemento in oggetto sia ri-

(3) Tra gli indici geomorfologici più frequenti indicati in bibliografia vi sono le "scarpe di faglia" e, talora, le "scarpe di linea di faglia". Si vuole qui ricordare che con il primo termine è da intendersi "una scarpa formata come risultato diretto di un fagliaimento della superficie terrestre" e con il secondo "una scarpa che risulta dall'erosione differenziale delle parti opposte di una faglia piuttosto che dal movimento della faglia stessa" (Cillier, 1988).
tato in una sola pubblicazione. Anche per questa voce, le eventuali discordanze risultano denunciate nelle note.

3.4.11 Classificazione

Facendo riferimento alla definizione di Castaldini et al. (1988) riportata al § 2, le faglie sono state riclassificate in “Attive” (abbreviate con “A”) o “Ritenute Attive” (abbreviate con “R”) esclusivamente sulla base dei dati qualificanti per la valutazione rinvenuti in letteratura.

Per le faglie illustrate in Cavallini et al. (1988c; 1988d) e Panizza et al. (1988a) non si è proceduto a questa riclassificazione poiché già definite secondo il criterio qui adottato.

Si precisa che la classificazione è stata riferita a tutto lo sviluppo dell’elemento in oggetto anche se, ovviamente, i dati di attività sono relativi a tratti ben definiti e limitati. Questo criterio appare in contrasto con quanto affermato nei lavori a carattere metodologico citati (Panizza & Castaldini, 1987; Castaldini et al., 1988; Panizza, 1988,) in cui si afferma che, per la diversità dei caratteri rilevati lungo il loro tracciato, gli elementi tettonici vanno suddivisi in tratti a differente classificazione. D’altronde per questo tipo di lavoro la “segmentazione” non è stata possibile sulla sola base dei dati forniti dalla letteratura.

E’ stata fatta un’eccezione esclusivamente per la Faglia Schio - Vicenza, n. 58, classificata per un breve tratto come “Attiva” e per la restante parte come “Ritenuta Attiva”, in considerazione del notevole sviluppo (circa 125 km) e della molteplicità di lavori in cui è citata.

3.4.12 Grado di attività

Il “Tasso di spostamento medio” si ottiene dal rapporto tra l’entità della dislocazione (D in m) in rocce e/o forme significative e l’età delle rocce o forme interessate (T in anni).

\[S = \frac{D}{T} \]

S pertanto si esprime in m/1000 anni o, meglio, in mm/anno.

Il “grado” di attività è classificato nelle categorie I, II e III, in relazione ai valori del Tasso di spostamento medio indicati in Tabella 1.

Ovviamente è stato possibile calcolare questo parametro solo per le faglie studiate più in dettaglio, facendo riferimento ai dati forniti dai vari Autori.

Non si è ritenuto opportuno indicare il valore del Tasso di spostamento medio poiché nella maggior parte dei casi i dati che hanno definito l’intervallo di attività della faglia sono privi di “marker” cronologici sicuri.

<table>
<thead>
<tr>
<th>Categoria Class</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>10 > S ≥ 1</td>
<td>1 > S ≥ 0,1</td>
<td>0,1 > S</td>
</tr>
</tbody>
</table>

3.4.13 Note

Come già accennato, in questa colonna sono riportate, se opportuno, le annotazioni e osservazioni degli scrittori relative ad una o più delle voci descritte in precedenza, richiamate da asterisco.

4. DISTRIBUTUZIONE E CARATTERISTICHE DELLE FAGLIE INVENTariate

4.1 Distribuzione

Nel presente lavoro di inventario sono state schedate e rappresentate in carta (Tav. 1: “Carta delle faglie attive”) 144 faglie o gruppi di faglie di cui 24 risultano “Attive” e 120 “Ritenute Attive”.

In particolare, per quanto riguarda le “Faglie Attive”, quelle localizzate nel bacino del F. Adda (faglie n. 3, 7, 8, 9, 12) sono state così clasificate dagli scrittori sulla base di dislocazione di forme e depositi glaciali (circhi, superfici esarate, morene, ecc.).

Le “Faglie Attive” ubicate nel settore compreso tra il F. Brenta ed il F. Piave (faglie n. 29, 34, 43, 44, 45, 47, 48, 49, 51 e 52) sono stati classificati tali perché, secondo i dati riportati in letteratura, dislocanti depositi pleistocenici, soprattutto würmiani. La classificazione delle “Faglie Attive” del settore lessineo-benacoense (faglie n. 58 p.p., 83, 88, 94, 99, 100, 102, 120, 131 e 138) è invece la stessa indicata nei lavori di Cavallini et al., 1988c; 1988d) e Panizza et al. (1988a).

Dall’osservazione della Tavola 1, è evidente come le “Faglie Attive” e le “Faglie Ritenute Attive” non abbiano una distribuzione uniforme ma risultino concentrate in due settori: 1) nel settore delle Prealpi Venete e nel Bellunese; 2) nell’area tra Padova, Brescia e Trento.

Per quanto riguarda il primo settore, si tratta di un’area “soggetta ad una forte ed articolata deformazione” nell’ambito del Pleistocene medio - Oocene (Slejko et al., 1987), in cui le ricerche neotettoniche sono risultate indubbiamente facilitate dalla presenza di depositi quaternari affioranti nella zona pedemontana.

Il secondo settore corrisponde all’area maggiormente studiata (cfr. Fig. 1) e una parte di essa, quella gardesana, è caratterizzata da una notevole mobilità tettonica quaternaria.

Il particolare adennesamento di faglie "attive" e "ritenute attive" è dunque da connettere, oltre alla effettiva...
Degree-of-activity Map
tica mobilità tettonica, anche, se non principalmente, ai numerosi studi di dettaglio. A riprova di ciò si osservi come inquesto settore siano state individuate ben 14 faglie con sviluppo inferiore ad 1 km (faglie n. 61, 63, 83, 84, 85, 88, 93, 94, 99, 100, 101, 102, 131, 138).

Un terzo settore, poco studiato, ma particolarmente interessante dal punto di vista delle dislocazioni tettoniche recenti, è quello del bacino dell'Adda, per il quale sono indicate soltanto poche faglie variamente distribuite, ma classificate come "attive": per esempio nell'area della Valfurva, alcuni elementi tettonici che erano già stati segnalati nell'ambito del P.F. Geodinamica - S.P. Neotettonica (Forcella et al., 1982), sono stati poi confermati ed ulteriormente dettagliati nell'ambito di studi successivi (Forcella & Orombelli, 1984).

L'assenza di faglie nell'area a Nord di Bolzano risulta dovuta, più che ad una mancanza di dislocazioni neotettoniche, ad una carenza di ricerche e quindi di fonti bibliografiche che forniscano dati sufficienti alla loro valutazione.

4.2 Caratteristiche

Le caratteristiche dei singoli elementi inventariati risultano indicate, come già detto, nelle schede dell'Appendice. Compiutamente si può affermare che il dato più controverso risulta quello del tipo di faglia e di movimento.

In particolare, le discordanze maggiori riguardano le strutture del "settore meridionale del Sudalpino" (Area benacenese, scledense, feltrina e bellunese) in cui spesso non si ha corrispondenza tra i prodotti iniziali (CNR, 1978; 1979; 1980; 1982; Zanferrari et al., 1982), quelli finali (CNR, 1983) del P.F. Geodinamica - S.P. Neotettonica ed i lavori successivi (Slejko et al., 1987).

Le diverse caratteristiche attribuite agli elementi tettonici derivano in parte dalla revisione di alcuni dati conseguenti a nuove indagini sul terreno e in parte ad una diversa interpretazione del quadro neotettonico evolutivo maturato successivamente.

Gli scrittori, pur consci delle ragioni delle suddette discordanze, poiché hanno partecipato in prima persona alle ricerche suddette, hanno ritenuto opportuno, per criteri di obiettività, indicare nelle note le discrepanze emerse caso per caso.

Per quanto riguarda le caratteristiche geometriche, a parte la direzione e la lunghezza, è stato possibile completare tutti i dati (immersione, inclinazione e rigetti compresi) solo nel caso delle faglie studiate in dettaglio.

Per cui i dati più esaustivi si hanno nel settore lessione-benacenese.

Un dato interessante riguarda i rigetti rilevati nell'ambito del periodo neotettonico considerato: messi in rapporto all'intervallo di tempo in cui si sono manifestati concordano a definire il "grado di attività" delle faglie, secondo quanto illustrato al punto 3.4.12 e che è stato rappresentato nella "Carta del grado di attività" (Fig. 4).

I rigetti riscontrati sono stati prevalentemente di tipo verticale, ad eccezione delle faglie n. 8 e 9 per le quali è stato accertato anche una componente orizzontale, e delle faglie n. 20, 128, 129 e 140 che sono indicate come esclusivamente trascorrenti.

I rigetti riscontrati vanno da pochi millimetri a varie centinaia di metri. In particolare i rigetti minimi sono stati rilevati con misure geometriche (De Concini et al., 1980) per la Linea della Valsugana (faglia n. 28) (5 mm) e per la linea di Belluno o di Silana (faglia n. 29) (3 mm) in un periodo di circa 5 anni; il grado di attività risulta tuttavia di categoria II.

I rigetti minimi riscontrati con criteri geologici invece sono dell'ordine di pochi decimetri (p.es. faglie n. 63 e n. 88) all'interno di depositi pleistocenici che fanno attribuire alle faglie in oggetto un grado di attività di categoria III.

I rigetti più marcati nel periodo fra il Pleistocene medio e l'Olocene sono stati rilevati nel settore orientale dell'area studiata: rigetti di oltre 100 m in corrispondenza della Faglia di Longhere, n. 47 (Zanferrari et al., 1980), e della Linea Marana-Piovene, n.60 (Cavallin et al., 1988d) e di 200 m della base del Pleistocene nel tratto di Conegnale della Linea Schio - Vicenza, n. 58 (Finetti, 1972).

Un altro rigetto notevole è rappresentato dai 100 m riscontrati in corrispondenza del sistema di faglie del Colle di S.Bartolomeo di Saib, n. 98 (Cavallin et al., 1988c, Panizza et al., 1988a), sulla costa occidentale del L. di Garda.

Questi dati fanno attribuire alle suddette faglie un grado di attività di categoria II.

Tuttavia il grado di attività massimo, I categoria, è stato riscontrato in corrispondenza di due "faglie ritenute attive" in cui sono stati rilevati rigetti di alcune decine di metri nell'ambito dell'Olocene.

Una è la faglia di Malo, n. 59, in cui è stata riscontrata una "probabile dislocazione di paleosuperficie e di depositi olocenici, a W di S.Vito di Leguzzano dell'entità di 25 m" (Cavallin et al., 1988d).

L'altra è la faglia n. 121, caratterizzata da una scarpa sinuosa, nastriforme sviluppata con continuità sul versante W di Cima Valdritta - M. Maggiore (M. Baldo) per la quale è stato detto un rigetto di 20+30 m nell'ambito del Tardiglacialle würmiano (Cavallin et al., 1988b).

Un cenno particolare va fatto per il fascio di faglie n. 9 in prossimità del crinale orobico. Dal confronto con Forcella et al. (1982), emerge (per il sistema da lui indicato con il n. 32) che la faglia più evidente del fascio
determina la dislocazione di un crinale sbloccato con una trascorrenza destra dell'ordine di alcune decine di m, con abbassamento del settore posto a NE e che "il controllo in situ al Pizzo Ceric ha permesso il ritrovamento di faglie con rigetto morfologico di circa 1 m entro superfici esarate".

Poiché dalle note non risulta chiaro se anche il rigetto orizzontale decametrico interessi forme glaciali, si è calcolato il grado di attività, risultato di II categoria, sulla base del rigetto di 1 m entro superfici esarate.

Per quanto riguarda le "Faglie Attive" il massimo grado di attività è risultato essere di II categoria; in particolare, è stato calcolato per faglie, e sistemi di faglie ubicate nelle seguenti zone:

a) Alpi Orobie e zona di Bormio (faglie n. 8, 9 e 12);

b) Alpi e Prealpi Venete ed antistante pianura (Linea di Belluno, n. 29, Linea Bassano - Valdobbiadene, n. 45, Linea di Longhere, n. 47, Linea del Montello, n. 51, Linea di Sacile, n. 52, Linea Schio - Vicenza, p.p., n. 58);

c) zona del M. Baldo (n. 94 e n. 120);

d) medio bacino del Sarca (n. 138).

Complessivamente, è stato possibile calcolare il grado di attività per 43 faglie su 144 inventariate (quindi per circa il 30%) di cui 18 "Attive" e 25 "Ritenute Attive".

In particolare, come già accennato, solo due faglie rientrano nella I categoria di attività (10>S≥1), (una di esse, faglia n. 59a, peraltro appartenente ad un fascio classificabile prevalentemente di II categoria), mentre 23 ricalcano nella II categoria (1>S≥0,1) e 18 nella III classe (0,1>S).

In considerazione del fatto che il "grado di attività" delle faglie rappresenta un dato estremamente interessante e significativo, nonostante sia stato possibile determinarlo per il solo 30% delle faglie inventariate, tale parametro è stato analizzato anche arealmente, elaborando una "Carta del grado di attività" (Fig. 4). Tale carta è stata redatta circoscrivendo le aree caratterizzate da faglie con uguale grado di attività.

Dell'esame della "carta del grado di attività" risulta quanto segue.

Fanno eccezione due faglie attive di limitatissimo sviluppo ubicate presso Vittorio Veneto (Faglie di Farrò, n. 48) e all'estremità NW della Linea Schio - Vicenza c/o Dietrobeseno (n. 63) per le quali è stato calcolato un'attività di III categoria.

Altre aree con faglie di II categoria sono la zona del M. Baldo, con anche dati di attività di I categoria in corrispondenza del versante W (faglia n. 121), la zona Sirmione-Garda e la sponda SW del L. di Garda.

Infine, sempre di II categoria risultano essere alcune faglie ubicate nei pressi del crinale orobico (faglie n. 8 e n. 9), nella zona di Bormio (faglia n. 12), presso Mezzolombardo (faglia n. 140) e in Val di Fassa (faglia n. 20).

Risultano invece essere aree con dislocazioni a "grado di attività" di III categoria la zona tra Rovereto, Trento e il basso Sarca (fatta eccezione per la faglia di Soran, n. 138, del resto di sviluppo chilometrico, che si dimostra di II grado), l'estremità SW dei M. Lessini, la faglia della Rocca di Manerba (n. 96a) e la zona dei rilievi isolati dell'alta pianura bresciana (Castenedolo e Ciliverghe).

4.3 Confronti

Sulla base del confronto fra la "Carta del grado di attività" (Fig. 4) e i lavori di neotettonica e di sismotettonica più recenti (CNR, 1983 e Slezko et al., 1987) si possono fare le seguenti considerazioni:

- il grado di attività di II categoria (localmente di I) rilevato nella zona delle Alpi e Prealpi Venete ed antistante pianura, nella zona M. Baldo - Garda - Sirmione, sulla costa SW del L. di Garda, aree ricadenti nel settore meridionale del Sudalpino, è congruente con quello di un'unità cinematico-strutturale contraddistinta dall'attività neotettonica e sismica più elevata di tutta l'area di studio (cfr. Slezko et al., 1987);

- il grado di attività di II categoria (localmente di I) rilevato in più tratti in corrispondenza della linea Schio - Vicenza e di sue vicarianti è compatibile con quello di un settore di svinoolo situato a cavallo di aree con caratteri geologico strutturali e comportamento neotettonico diverso;

- il grado di attività di III categoria rilevato all'estremità SW dei Lessini è congruente con il comportamento neotettonico del blocco lessinese caratterizzato da sollevamento e deformazione non accentuati;

- il grado di attività di III categoria riscontrato per dislocazioni ubicate in corrispondenza dei rilievi isolati della zona SW del L. di Garda e del M. Baldo.

La spiegazione a tali discrepanze può essere la seguente: gli studi neotettonici più recenti (Baroni & Cremaschi, 1988; Panizza et al., 1988a) hanno dimostrato che, nel Pleistocene medio - Olocene, i rilievi iso-
lati di Castenedolo e Citnvergne apparteneggi, assieme a quelli di M.Netto e di Calvis, ad una fascia di pianura di minore subsidenza rispetto alle aree circostanti, ma comunque esterne all’area prealpina in forte sollevamento e deformazione. Per cui si ritiene da modificare il limite indicato da CNR (1983) che inserisce l’area dei rilievi isolati nello stesso settore neotettonico dell’area prealpina e benacense. In quest’ottica appare giustificato un grado di attività di III categoria.

Per quanto riguarda la zona tra Rovereto, Trento ed il basso Sarca, dove è stato possibile calcolare un grado di attività di III categoria per ben una decina di dislocazioni, si ritiene che il grado di attività stesso sia stato "sottostimato" per mancanza di sicuri "marker" di riferimento per la datazione dell’attività delle faglie da parte di chi le ha studiate in dettaglio (cfr. Cavallin et al., 1988b; 1988c). Infatti esse sono state indicate attive in tutto l’intervallo Pleistocene medio - Olocene ma non si può escludere che questa attività sia concentrata soltanto nell’Olocene. D’altronde attività oloocene è accertata nella stessa zona, per la faglia di Soran (n. 138) che denuncia un grado di attività di II categoria.

Per quanto riguarda infine la faglia della Rocca di Manerba, n. 96a, occorrerebbe appurare l’età dei depositi deformati, che in bibliografia vengono attribuiti genericamente al Pleistocene.

Il grado di attività di II categoria rilevabile in corrispondenza di sistemi di faglie nelle Alpi Orobie (faglie n. 8 e n. 9) e nella zona di Bormio (faglia n. 12) nonché nell’area Dolomitica inducono ad ipotizzare un’attività tetttonica nell’Olocene più diffusa di quanto indicato negli studi di neotettonica sino ad ora condotti(4).

5. CONSIDERAZIONI CONCLUSIVE

Il presente lavoro rappresenta un primo contributo verso un inventario delle faglie attive estensibile a tutto il territorio nazionale.

La ricerca ha messo in evidenza quanto sarebbe necessario per giungere ad una maggiore completezza dei dati contenuti in questo inventario delle faglie attive sull’area esaminata.

Dalla "Carta delle faglie attive" (Tav. 1) risulta evidente che la distribuzione degli elementi tetttonici inventariati è strettamente condizionata dal numero, dal dettaglio e dal tipo di metodologia delle ricerche svolte e testimoniate dalla letteratura neotettonica. Se ne deduce che un quadro più completo ed omogeneo sarà possibile solo quando tutte le aree saranno studiate in egual dettaglio e secondo metodologie omogenee fra loro.

Le schede dell’inventario (vedere Appendice) mostrano alcune carenze e disomogeneità di dati relativi alle singole faglie, come ad esempio inclinazione ed immersione, rigetto, grado di attività. Anche in questo caso sarebbe necessario disporre di analisi di e risultati ottenuti attraverso ricerche eseguite con criteri metodologici e grado di approfondimento simili fra loro.

Più in generale si è rilevato che la bibliografia esistente sulle "faglie attive" è prevalentemente riferita a studi a carattere geologico-geomorfologico, con pochi riferimenti a dati di tipo sismologico, geofisico, geodetic etc. Anche le ricerche a carattere geologico-strutturale appaiono ridotte e comunque non uniformemente distribuite nel territorio in esame.

L’integrazione e l’approfondimento dei temi suddetti permetterebbe di definire e precisare quanto non appare ancora chiaro in merito ai rapporti tra elementi tetttonici attivi ed altri fenomeni geodinamici, come ad esempio attività sismica, deformazioni crostali, evoluzione delle strutture geologiche. Inoltre, è fuori di dubbio che una ricerca quanto più è integrata fra le varie discipline tanto più può risultare obiettiva e vicina alla corretta interpretazione del fenomeno.

Risulta infine indispensabile la realizzazione di una "banca dati" sugli elementi tetttonici "attivi" e "ritenuti attivi". Infatti, da un punto di vista sia scientifico che applicativo è estremamente importante disporre di tale inventario: ad esempio per contribuire a una ottimale definizione di un grado sismotettonico e sismogenetico regionale, oppure per problemi di carattere applicativo, come la valutazione del rischio sismico, in particolare, o, più in generale, per una corretta pianificazione territoriale.

Il presente lavoro in definitiva vuole essere un punto di partenza, una proposta, nonché un utile "banca dati preliminare per l’approfondimento degli studi sulla tettonica recente ed attiva.

Lavoro eseguito nell’ambito delle ricerche del Progetto Nazionale "Geomorfologia strutturale ed evoluzione del rilievo in Italia e in aree mediterranee" e dell’IGU Study Group on "Geomorphic Hazards".

Pubblicato con il contributo finanziario dei Fondi per la Ricerca Scientifica 40% del M.P.I. (Resp. locale M. Panizza).
APPENDICE

Schede illustrative delle faglie attive fra i fiumi Po e Piave e il Lago di Como
<table>
<thead>
<tr>
<th>Posizione</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Giacitura</th>
<th>Attitude</th>
<th>Lunghezza (Km)</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervallo di attività</th>
<th>Grado di attività</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6</td>
<td>Versante E</td>
<td>Val S.Giacomo</td>
<td>Sistema di fratture (*)</td>
<td>NNW-SSE</td>
<td>--</td>
<td>8</td>
<td>Sistema di fratture parallele all'asse della valle, che determinano terrazzi strutturali, contropendenze, valli parallele con pendenza opposta alla valle principale nella quale confluiscono. 50], p 249</td>
<td>Pleistocene sup.</td>
<td>rA</td>
</tr>
<tr>
<td>2 17</td>
<td>Val di Sorico, Passo Forcola</td>
<td>--</td>
<td>Fascio di faglie con movimento non definito (*)</td>
<td>NNW-SSE</td>
<td>--</td>
<td>3</td>
<td>Faglie evidenziate da scarpate, creste rettilinee, contropendenze, solchi vallivi molto incisi. In alcuni casi sembrano dislocare preesistenti lineamenti diretti E-W. La più orientale può essere seguita per oltre 10 km. 50], p 255</td>
<td>Pleistocene sup.</td>
<td>rA</td>
</tr>
<tr>
<td>3 17</td>
<td>Alpe di Cauritt</td>
<td>--</td>
<td>Verticale con sollevamento lato NW</td>
<td>WSW-ENE</td>
<td>v</td>
<td>3</td>
<td>Frattura che produce un rigetto verticale con sollevamento della parte a valle che si manifesta con una contropendenza che interrompe bruscamente il profilo del circo. 50], p 255</td>
<td>Postglaciale würmiano da 50]</td>
<td>A</td>
</tr>
<tr>
<td>4 18</td>
<td>M. Gruf</td>
<td>--</td>
<td>Fascio di fratture e faglie con movimento non definito (*)</td>
<td>NW-SE</td>
<td>--</td>
<td>13</td>
<td>Lungo queste linee si sono verificati in tempi storici ed anche attualmente numerosi eventi correlabili con la loro attività (frane e terremoti). Tra gli indizi morfologici più vistosi si possono citare: numerose selle, impressionante canyon della Val Piana, aste di drenaggio perfettamente allineate. 50], p 255</td>
<td>Attuale da 50]</td>
<td>rA</td>
</tr>
</tbody>
</table>

*) 38] semplifica il sistema in un unico elemento, a cui si è fatto riferimento per la determinazione della lunghezza

*) 38] semplifica il sistema in un unico elemento, a cui si è fatto riferimento per la determinazione della lunghezza
<table>
<thead>
<tr>
<th>n° Faglia Fault n.</th>
<th>Ubicazione Location</th>
<th>Nome della faglia Name of the fault</th>
<th>F.I.G.M.I. F.I.G.M.I.</th>
<th>Località Locality</th>
<th>Nomenclatura cartografica Geological name</th>
<th>Tipo di faglia Type of fault</th>
<th>Direzione Striae</th>
<th>Inclinazione Striae</th>
<th>Dislocazione (m)</th>
<th>Lunghezza (km)</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervalli di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Note Notes</th>
<th>Giro di ampiezza Angular range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 18</td>
<td>Valle di Togno</td>
<td>-</td>
<td>50</td>
<td>38</td>
<td>sistema di faglie con movimento non definito</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>Faglie coincidenti con una serie di linee di drenaggio parallele. Dislocano un sistema di fratture orientate NE-SW caratterizzato da contropendenze di particolare evidenza 50], p 258</td>
<td>Pleistocene sup. p.p. - Olocene 50]</td>
<td>rA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6 18</td>
<td>Tartano, P.so di Vendulungo</td>
<td>-</td>
<td>50</td>
<td>38</td>
<td>Fascio di fratture</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
<td>da 3 a 10</td>
<td>-</td>
<td>Fratture corrispondenti a valli rettilinee, linee di drenaggio particolarmente rettilinee ed incise, allineamento di aste di drenaggio che scendono trasversalmente al pendio. Rappresenta la prosecuzione del gruppo di fratture n. 7 50], p 260</td>
<td>Pleistocene sup. p.p.- Olocene 50]</td>
<td>rA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7 18</td>
<td>Crinale orobico (zona M. Aga)</td>
<td>-</td>
<td>50</td>
<td>38</td>
<td>Fascio di fratture</td>
<td>WNW-ESE</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>Fratture subparallele alla direzione del clivaggio della formazione del Collio e trasversali ai limiti litologici e strutturali. Morfologicamente evidenziate da: contropendenza molto accentuata, linee di drenaggio particolarmente incise e rettilinee, numerose discontinuità plano alimetriche della linea di cresta. Sul crinale del M. Como Stella determinano gradini e sbarramenti in una morfologia già modellata dalla esarazione glaciale. Continua nel fascio n. 6 50], p 260</td>
<td>Postglaciale wirmiano da 50]</td>
<td>A</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>n° Faglia</td>
<td>Faglia in map</td>
<td>Ubicazione</td>
<td>Nome della faglia</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Tipo di faglia</td>
<td>Giacitura</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervallo di attività</td>
<td>Classificazione</td>
<td>Note</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pizzo Ceric</td>
<td>-</td>
<td>50</td>
<td></td>
<td></td>
<td>Fratture con movimenti sia verticali che orizzontali (trascorrenza sinistra)</td>
<td>NNE-SSW</td>
<td>Fratture sessionanti il crinale, un circo e altre forme di esorazione glaciale presso Pizzo Ceric con direzione obliqua ai lineamenti strutturali alpini. Determinano un graben subparallelo al crinale.</td>
<td>Post-glaciale würmiano da 50]</td>
<td>A</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pizzo del Diavolo, Cima Soliva</td>
<td>-</td>
<td>50</td>
<td></td>
<td></td>
<td>Fascio di faglie con movimenti sia orizzontali (trascorrenza destra) che verticale (abbassamento lato SE)*</td>
<td>WNW-SW</td>
<td>Faglie trasversali a lineamenti strutturali alpini e subparallele alla scistosità del basamento cristallino. La più evidente determina la dislocazione di un crinale sodepito. Il controllo al Pizzo Ceric ha permesso il ritrovamento di faglie con rigetto verticale di circa 1 m entro superfici esarate.</td>
<td>Post-glaciale würmiano da 50]</td>
<td>A</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pizzo Recastello, Laghi del Venerocolo</td>
<td>-</td>
<td>50</td>
<td></td>
<td></td>
<td>Fascio di fratture *)</td>
<td>WNW-ESE</td>
<td>Fratture localmente subparallele ai lineamenti strutturali alpini. Si tratta di fratture che scompongono le masse rocciose lungo le quali si sono spesso imposta canali di drenaggio particolarmente incisi e rettilinei, talvolta con andamento contrario rispetto a quello del colletto principale.</td>
<td>Pleistocene sup. p.p. - Olocene 50]</td>
<td>rA</td>
<td>*)38] simplifica il fascio con un unico elemento a cui si è fatto riferimento nella determinazione della lunghezza</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note *)38] simplifica il fascio con un unico elemento a cui si è fatto riferimento nella determinazione della lunghezza; **) nel Post-glaciale würmiano.

Notes
<table>
<thead>
<tr>
<th>n° Faglia Fault n.</th>
<th>Ubicazione Location</th>
<th>Nome della falla Name of the fault</th>
<th>Bipolare geometrica Geometric reference</th>
<th>Tipo di falla Type of fault</th>
<th>Giacitura Attitude</th>
<th>Dati qualificanti per lo sviluppo Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Degno di attenzione Degree of attention</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 19</td>
<td>M. Bogna, viso, S. Antonio</td>
<td>-</td>
<td>50</td>
<td>Frattura</td>
<td>NNE-SSW</td>
<td>Frattura trasversale ai lineamenti strutturali alpini, posta sulla prosecuzione di faglie aventi la stessa orientazione. Evidenza morfologica discontinua: solchii di drenaggio fortemente incisi e contrapposti, avvallamento gravitativo, solchi di drenaggio tra loro paralleli e disposti trasversalmente al pendio. 50], p 264</td>
<td>Pleistocene sup. p.p.-Olocene 50]</td>
<td>tA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12 8</td>
<td>C.m. di Plator, Valfurva</td>
<td>-</td>
<td>50</td>
<td>Fascio di fratture *)</td>
<td>WNW-NE -55° SV -55°</td>
<td>Fratture parallele alla direzione del piano di accavallamento tra sedimentario e cristallino, leggermente trasversali alla scistosità. Sottolineate da: rotture di pendio, reticolo idrografico, allineamenti di sorgenti termali 50], p 254</td>
<td>Olocene 51]</td>
<td>A</td>
<td>II *)38] semplifica il fascio con un unico elemento a cui si è fatto riferimento nella determinazione della lunghezza **) Singolo da 0,1 a 10 m v; cumulativo > 100m v</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Località</td>
<td>Nome della falda</td>
<td>Tipo di falda</td>
<td>Attitude</td>
<td>Direzione</td>
<td>Immagine Diritto</td>
<td>Incidenza Diritto</td>
<td>Lunghezza (m)</td>
<td>Dati qualificanti per la valutazione Trace features</td>
<td>Intervallo di attività</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>13</td>
<td>Alta Val Venosta</td>
<td>-</td>
<td>Sistema di falde dirette che sollevano ad horst la zona di P. di Mezzo</td>
<td>WNW.-ESE NW-SE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>da 8 a 19</td>
<td>Nel Pliocene-Pleistocene inf. nell’alta Val Venosta si individua un horst attivo in parte anche successivamente. *</td>
<td>da 8 a 19</td>
</tr>
<tr>
<td>14</td>
<td>Alpi Pusteresi</td>
<td>-</td>
<td>Sistema di falde*</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>da 7 a 14</td>
<td>L’attività di queste dislocazioni disgiuntive è dimostrata con considerazioni di carattere morfotetttonico**</td>
<td>da 7 a 14</td>
</tr>
<tr>
<td>n° foglia</td>
<td>F.I.G.N.</td>
<td>Ubicazione</td>
<td>Nome della falda</td>
<td>Tipo di falda</td>
<td>Giacitura</td>
<td>Attitude</td>
<td>Dislocazione</td>
<td>Trace features</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervallo di attività</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>Tofane col Becchei</td>
<td>F. delle Tofane (versante E)</td>
<td>Diretta con sollevamento parte W</td>
<td>NNE-SSW</td>
<td>E</td>
<td>v</td>
<td>-</td>
<td>Faglia che interessa la Dolomia Principale e che trova riscontro morfologico in scarpate rettilinee, selle allineate, forre contrapposte e in una dislocazione altimetrica di crinale. 21], p 629</td>
<td>Plio-Pleistocene</td>
</tr>
</tbody>
</table>
| 17 | 12 | Tofane | F. delle Tofane (versante W) | *) | NNW-SSE | E | v | - | Trova riscontro morfologico in canali profondamente incisi e perfettamente allineati sul versante W di Tofane 3° e 2°. 21], p 628, 629 | Plio-Pleistocene | 21] | rA | - | *) Faglia inversa secondo 21] (geologicamente visibile nella parte più orientale delle due selle ad W della Croda del Vallon Bianco dove si ha la sovrapposizione del Lis al Neocomiano). Diretta secondo gli altri Autori. La parte abassata è per tutti quella W.
<table>
<thead>
<tr>
<th>No.</th>
<th>Località</th>
<th>Name of the fault</th>
<th>Ubicazione</th>
<th>Tipo di falla</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervalli di attività</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Alta Val Badia</td>
<td>–</td>
<td>–</td>
<td>Trascorrente destra *)</td>
<td></td>
<td>Post-Würm 61</td>
<td>rA</td>
</tr>
<tr>
<td>20</td>
<td>Mazzin</td>
<td>F. di Mazzin</td>
<td>–</td>
<td>NNE-SSW</td>
<td>Faglia rilevabile in Val Duron dove taglia una serie di filoni. Fenomeni di frana ad essa attribuiti sono sicuramente databili all'Olocene. E' altresì responsabile della cattura dell' alta Val di Dona ad opera del Rio di Udai. 24], p 16-17</td>
<td>Olocene 24</td>
<td>rA</td>
</tr>
<tr>
<td>n° Figura</td>
<td>Locality</td>
<td>Location</td>
<td>Name of the fault</td>
<td>Type of fault</td>
<td>Direction Strike</td>
<td>Dip Angle (°)</td>
<td>Dip Assessment</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>22</td>
<td>Brusago, Regnana</td>
<td>-</td>
<td>21</td>
<td>Coppia di faglie *)</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° Faglia</td>
<td>Località</td>
<td>Ubicazione Locality</td>
<td>Nome della faglia Name of the fault</td>
<td>Tipo di faglia Type of fault</td>
<td>Giacitura Attitude</td>
<td>Dati qualificanti per la valutazione Trace features</td>
<td>Intervallo di attività Period of activity</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>23</td>
<td>Val Cadino</td>
<td>F. della Val Cadino</td>
<td>Trascorrente sinistra*)</td>
<td>N-S</td>
<td>12</td>
<td>Faglia marcata dalla rettilineità della Val Cadino. Sembra in relazione con la formazione dei terrazzi fluviali olo-cenici della Val di Fassa. 21], p 634</td>
<td>Post-Würm 21]</td>
</tr>
<tr>
<td>24</td>
<td>Valle dei Mocheni</td>
<td>Linea del Fersina</td>
<td>Diretta con sollevamento lato SE</td>
<td>NWSE NWv</td>
<td>18</td>
<td>Dislocazione marcata da evidenti indizi morfologici (allineamento di tratti valivvi rettilinei, selve e canaloni). Considerazioni su anomalie del tracciato attuale del T. Fersina inducono a ritenere la attiva nel post-würm. 21], p 633-634</td>
<td>Post-Würm 21]</td>
</tr>
<tr>
<td>25</td>
<td>Val Tolva, Val Regana</td>
<td>F. Val Tolva-Val Regana</td>
<td>*)</td>
<td>N-S</td>
<td>20</td>
<td>Evidente disturbo tettonico caratterizzato dal perfetto allineamento tra la Val Regana e la Val Tolva. Caratterizzato anche da discontinuità alimetricali che di crinali. 21], p 625</td>
<td>**)</td>
</tr>
<tr>
<td>n° Faglia Fault</td>
<td>N°</td>
<td>Ubicazione Location</td>
<td>Nome della faglia Name of the fault</td>
<td>Bibliografia references</td>
<td>Tipo di faglia Type of fault</td>
<td>Giacitura Attitude</td>
<td>Dislocazione Displacement</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>n° Faglia Fault no</td>
<td>Ubicazione Location</td>
<td>Nome della faglia Name of the fault</td>
<td>Bibliografia Literature references</td>
<td>Tipo di faglia Type of fault</td>
<td>Giacitura Attitude</td>
<td>Dato qualificanti per la valutazione Trace features</td>
<td>Intervallo di attività Period of activity</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| 28 22 23 | P. so Brocon, Forno di Zoldo | Linea della Valsugana | *42* | WSW-ENE | N | 0,05 | 50 | Livellazioni ripetute (alla sua estremità W) hanno permesso di riconoscere movimenti verticali certi (movimento relativo di abbassamento delle filladi del laito N rispetto alle rocce mesozoiche del laito S), avvenuti soprattutto fra il 1974 e il 1976, molto probabilmente in concomitanza con il sisma del Friuli. L'entità massima dei movimenti verticali è risultata di 1,1 mm/anno. Movimento complessivo di circa 5 mm nel periodo 1974-78. 42], p 63. È probabile un modesto e forse discontinuo proseguimento di attività della linea della Valsugana anche nell'intervallo Pleistocene medio-superiore. In ogni caso delimita a N un'area con caratteristiche neotettoniche in generale meno evidenti di quelle della zona S. 66], p 373 | Attuale da 42] | rA | II | *) Per quanto riguarda la zona trentina, si tratta di una piega in gran parte struttura a faglia vorticale o sub-verticale inversa ([55]). In 66] e 85] è indicata come una faglia inversa S vergente sino al Pleistocene inferiore che successivamente denota un abbassamento del laito N. In 38] e 78] è indicata come sovrascorrimen
to S vergente. **) Nel periodo 1974-78 21] | Notes |
<table>
<thead>
<tr>
<th>n° Foglia n.</th>
<th>Ubicazione</th>
<th>Nome della foglia</th>
<th>Tipo di foglia</th>
<th>Giacitura</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervallo di attività</th>
<th>Classificazione</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/22</td>
<td>Pedavena F. di Facen</td>
<td></td>
<td>66</td>
<td>NNE-SSW</td>
<td>Faglia che separa zone con differenti modalità di sollevamento. Morfologicamente caratterizzata da una grande scarpa e da numerosi indizi morfotettonici nel tratto settentriionale. 66], p 376, 382</td>
<td>Plio-Quaternario rA</td>
<td></td>
<td>*) Da 66] e 85] è indicata come diretta; da 38] e 78] come inversa. Il lato abbassato è comunque quello E.</td>
</tr>
<tr>
<td>n° Folga</td>
<td>Foliage</td>
<td>Ubicazione</td>
<td>Nome della folga</td>
<td>Tipo di folga</td>
<td>Giacitura</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervento di attività</td>
<td>Classificazione</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>32</td>
<td>23</td>
<td>Media Val Cordevole, Val de Medone</td>
<td>F. della Val de Medone</td>
<td>Verticale con movimento non definito</td>
<td>NW-SE</td>
<td>Flaglia caratterizzata da numerosi indizi morfotettonici*. Alcuni allineamenti particolarmente vistosi nella morfologia postglaciale a S della Val de Medone indicano una estensione della sua attività anche verso le Prealpi Bellunesi. 66], p 378</td>
<td>Postglaciale da 66]</td>
<td>rA</td>
</tr>
<tr>
<td>n° Figlia</td>
<td>Ubicazione</td>
<td>Nome della figlia</td>
<td>Tipo di figlia</td>
<td>Giacitura di attitudine</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervallo di attività</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>----------------------</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>
| 34 | Pieve di Cadore | Sistema Cadorino | Sistema di sfondamento trasversale* | NNW-ESW | Insieme di faglie che disloca, come dimostrato nella bassa val Zemola, depositi di versante previamente scuriti. Caratterizzato da: freschezza di scarpate e di superficialità di faglie, valli profonde alineate con delle depressioni e scarpate di corrispondente della Paglia di M. Curno
(34a)
66], p 372 e 377
70j e 67j correlano all'attività di questo sistema i sismi verificatisi nel periodo 1977-1987. | Attuale da 66] | A |
| 35 | Bassa Val Cismon | F. del Lago di Corlo | Diretta con sollevamento lato E | NNE-SSW | 10 | Pleistocene medio - Olocene | tA |

*) Faccio di fratture di tensione parallelo alla spinta del blocco adriatico in quest'area e verificatosi nel settore di massima deformazione, visibile come passaggio dalle linee sinistrorse del sistema sceladene a quelle destorose del sistema dinarico e dalle direzioni del sistema valbreganese a quelle del sistema friulano.

**) Le più settentrionali continuano verso SE al di fuori dell'area studiata
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>n° Località</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Type of fault</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervallo di attività</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>37</td>
<td>Le Marmo-</td>
<td>-</td>
<td>ENE-WSW</td>
<td>>0,1</td>
<td>Quaternario</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rin (M.</td>
<td></td>
<td>Frattura</td>
<td>La superficie di faglia è visibile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grappa)</td>
<td></td>
<td>beante</td>
<td>per una lunghezza di un centinaio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>di metri (corrisponde ad una frattura</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>beante con segni di distensione in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>atto) e la parte restante è coperta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>da depositi colluviali recenti.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78], p 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Val dei</td>
<td>Sistema di</td>
<td>Dirette con</td>
<td>da 3 a 9</td>
<td>Quaternario</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lebi, Val</td>
<td>faglie Cima</td>
<td>sollevamen-</td>
<td>Sistema che trova espressione</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stizzon</td>
<td>Grappa-Col dell’</td>
<td>to laito E.</td>
<td>morfologica in un’altra scarpata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M. Grap-</td>
<td>Orso</td>
<td></td>
<td>(anche 500 m) caratterizzata da</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa)</td>
<td></td>
<td></td>
<td>una doppia serie di facette</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>triangolari.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74], p 146, 147</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sistema di faglie la cui attività</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>è legata a quella di elementi areali</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e che dà luogo a una serie di</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grandi scarpate polifasiche.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87], p 410, 414, 416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>37</td>
<td>M. Tomati-</td>
<td>F. di</td>
<td>Trascorren-</td>
<td>9</td>
<td>Pleistocene medio-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>co</td>
<td>Schievenin</td>
<td>te sinistrons-</td>
<td>Rigetta elementi attivi nello stesso</td>
<td>superiore</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sa</td>
<td>intervallo di attività e presenta</td>
<td>87]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>una serie di forti indizi morfotettonici *)</td>
<td>87], p 414</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pu riportata nei numerosi lavori indi-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cati, non risulta descritta.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>37</td>
<td>M. Toma-</td>
<td>F. di</td>
<td>Non defini-</td>
<td>Pleistocene medio-</td>
<td>Pleistocene medio-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tico</td>
<td>Vas</td>
<td>to</td>
<td>supe</td>
<td>superiore.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ri</td>
<td>87]</td>
<td></td>
</tr>
</tbody>
</table>

*) Non specificati.
<table>
<thead>
<tr>
<th>n° Falga n.</th>
<th>P.L.G.M.I.</th>
<th>Ubicazione</th>
<th>Nome della falga</th>
<th>Tipo di falga</th>
<th>Giacitura Attitude</th>
<th>Direzione Strike</th>
<th>Inclinazione (\degree)</th>
<th>Dip Angle (\degree)</th>
<th>Rigetto (m)</th>
<th>Displacement (m)</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Geologica Degree of activity</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>23</td>
<td>P.so S. Boldo, M. Cor</td>
<td>F. di Pranoiz</td>
<td>Diretta con abbassamento lato N</td>
<td>WSE-ENE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>"Bedding fault" il cui piano di movimento è evidenziato da una serie di faccette triangolari. 66] p 367, 373</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plio-Pleistocene 66]</td>
<td>tA</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>23</td>
<td>Trichiana</td>
<td>-</td>
<td>Diretta con abbassamento lato N</td>
<td>WSW-ENE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>Faglia ubicata sul fianco meridionale della sinclinales di Belluno che interessa i terreni terziari del Flysch; ne delimita la zona più depressa e separa elementi areali a diverso comportamento neotettonico. 66], p 367, 373, 378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plio-Quaternario</td>
<td>tA</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>23</td>
<td>Ponte nelle Alpi</td>
<td>F. della Vena d'oro</td>
<td>Diretta con abbassamento lato W</td>
<td>N-S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>Delimita il fianco occidentale dell'anticlinale di Cugnan (alla cui estremità settentrionale sono presenti depositi pre-würmiani deformati) ed è individuata davanti uno spartizione di faglia ad ampio meridiano. 66], p 366, 378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plio-Quaternario</td>
<td>tA</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>23</td>
<td>Col Visentin</td>
<td>-</td>
<td>Diretta con abbassamento lato S</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,2</td>
<td>"Surface fault" trasversale alle strutture regionali. Morfologicamente poco "fresca" risulta posteriore alle forme erosionali verosimilmente würmiane del glacialismo attuale. 78], p 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-Würm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>n° Foggia</td>
<td>Foggia</td>
<td>Ubicazione</td>
<td>Nome della faglia</td>
<td>Type of fault</td>
<td>Giacitura</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervento di attività</td>
<td>Classificazione attività</td>
<td>Nota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>23</td>
<td>Col Visentin</td>
<td>F. di Fais</td>
<td>Diretta con abbassamento lato S</td>
<td>NW-SE</td>
<td>Disloca breccie periglaciale wūrmiane (forse anche più antiche) ed è caratterizzata dalla freschezza di alcune superfici di frattura nel substrato e nelle breccie sopraccitate.</td>
<td>Post - Wūrm da 66</td>
<td>A</td>
<td>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>23, 37, 38</td>
<td>Caltrano, Bassano, Valdobbiadene, Fadalto</td>
<td>Linea o Flessura Bassano-Valdobbiadene</td>
<td>*)</td>
<td>WSW-ENE, NNE-SSW</td>
<td>S da 75° a v</td>
<td>Prova della sua attività è fornita, in più luoghi, dalla deformazione di depositi continentali wūrmiani poggianti su strutture direttamente collegate alla flessura.</td>
<td>Post-Wūrm da 66 e 87</td>
<td>A</td>
<td>II**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) A seconda dei vari Autori è indicata come flessura, piega faglia o sovraccorrimento S vergente. Attraverso la vicinanza linea di Longhera (47) continua verso E anche ai di fuori dell'area in esame.

**) Il sollevamento complessivo post-Piacenziano della Flessura Bassano-Valdobbiadene può essere valutato a 0,5-1 mm/anno.

66], p 373, 378
86], p 364, 407
87], p 406, 419
85], p 373
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Intervento di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Note</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Plio-Quaternario 1A</td>
<td></td>
<td>*)</td>
<td>*) Continua verso W nella faglia di Longhere, (47), e verso E, al di fuori dell’area in esame, nelle linee di Sarone ed Aviano. **) Secondo 66], 87] e 85] è subvericale; dal confronto con 38] e 78] è inversa. Il lato abbassato è comunque quello W.</td>
</tr>
<tr>
<td>47</td>
<td>Post Würm da 85]</td>
<td></td>
<td>A II</td>
<td>*) Vicariante della linea Bassano-Valdobbiadene (48), continua verso E nella Faglia di Montaner (46). **) Nel Pleistocene medio-Olocene. 87]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Intervento di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Note</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Plio-Quaternario 1A</td>
<td></td>
<td>*)</td>
<td>*) Continua verso W nella faglia di Longhere, (47), e verso E, al di fuori dell’area in esame, nelle linee di Sarone ed Aviano. **) Secondo 66], 87] e 85] è subvericale; dal confronto con 38] e 78] è inversa. Il lato abbassato è comunque quello W.</td>
</tr>
<tr>
<td>47</td>
<td>Post Würm da 85]</td>
<td></td>
<td>A II</td>
<td>*) Vicariante della linea Bassano-Valdobbiadene (48), continua verso E nella Faglia di Montaner (46). **) Nel Pleistocene medio-Olocene. 87]</td>
</tr>
<tr>
<td>n° Faglia</td>
<td>F.</td>
<td>Ubicazione</td>
<td>Nome della faglia</td>
<td>Tipo di faglia</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>48</td>
<td>38</td>
<td>F. di Farrò</td>
<td>F. di Farrò</td>
<td>*)</td>
</tr>
<tr>
<td>49</td>
<td>38</td>
<td>Non definito</td>
<td>F. di Ped-</td>
<td>Non definito</td>
</tr>
<tr>
<td>50</td>
<td>38</td>
<td>Moriago della Battaglia</td>
<td>F. del Quartiere del Piave</td>
<td>*)</td>
</tr>
<tr>
<td>° Facta</td>
<td>Location</td>
<td>Name of the fault</td>
<td>Type of kauft</td>
<td>Grottaglione</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>51</td>
<td>Bassano, Montebello, Conegliano</td>
<td>Linea di Aviano o Linea del Montello</td>
<td>Sovrascorrimiento Sud-ovest al limite proal-plat-pianura</td>
<td>WSW-ENE</td>
</tr>
<tr>
<td>37</td>
<td>Linea di Aviano</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Linea del Montello</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Linea di Aviano</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Linea del Montello</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Linea di Aviano</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Linea del Montello</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Figura</td>
<td>Location</td>
<td>Name of the fault</td>
<td>Type of fault</td>
<td>Giacitura Attitude</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 52 | Spresiano, Cordignano | Linea di Sacile | SW-NE | 30 | Disloca fortemente i depositi quaternari (sismica AGIP) | Attuale | A ***) | *) A seconda dei vari Autori si tratta di faglia inversa ad alto angolo o di sovraccorrimento Sud-verbatim. ***)Continua verso NE sino al F. Tagliamento.

Livellazioni di precisione effettuate sul tratto Cortina-Venezia nel periodo 1952-85, evidenziano un sollevamento caratterizzato da un moto rotatorio, di velocità angolare di circa \((6,4\pm0,4)\times10^{8}\) rad/anno, attorno ad un asse passante per Spresiano, compatibile con una faglia sepolta orientata SW-NE.

Cfr. 2° e 3°

Per la sismicità valgono le considerazioni espresse per la 51.

| 53 | Spresiano, M. Crep | F. di Nervesa | NW-SE | 30 | Faglia caratterizzata nella zona collinare e montana da una serie di forti evidenze morfoteticniche ***) | Plio-Quaternario | tA ***) | *) Secondo 87°, 85° e 55° si tratta di faglia trascorrente sinistrorresia; è indicata come non definibile da 38° e 78°

***) Non specificate.
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Località</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Giacitura</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervallo di attività</th>
<th>Classificazione attività</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Treviso, Montebelluna</td>
<td>F. di Montebelluna</td>
<td>*) NW-SE</td>
<td>60</td>
<td>L'attività della faglia è documentata soprattutto dai dati del sottosuolo e dai suoi rapporti con gli altri elementi tectonici. Nel post-würmiano la sua attività è giustificata sui rilievi da, non meglio precisate, forti evidenze morfotettoniche. (cfr. 68), 87 e 85) Per la sismicità si rimanda alle considerazioni espresse per la 51.</td>
<td>Plio-Quaternario</td>
<td>rA</td>
</tr>
<tr>
<td>55</td>
<td>Noale, Bassano, Val Frenzelza</td>
<td>F. di Bassano</td>
<td>*) NW-SE</td>
<td>50</td>
<td>Assieme alla faglia di Padova Est,n.56, determina una zona di maggior subsidenza nel graben di Villa del Conte e un richiamo del reticolato idrografico con spostamento del percorso del Brenta da Est verso Ovest. Caratterizzata da alcuni indici morfotettonici (non specificati) sui rilievi (cfr. 86), 87, 85) Per la sismicità si rimanda alle considerazioni espresse per la 51.</td>
<td>Plio-Quaternario</td>
<td>rA</td>
</tr>
</tbody>
</table>

*) Faglia con movimenti a componente sia orizzontale che verticale. La loro evidenza e il loro verso sono tuttavia controversi (cfr. i vari Autori)
<table>
<thead>
<tr>
<th>#</th>
<th>Faglia</th>
<th>Località</th>
<th>Nome della foglia</th>
<th>Tipo di foglia</th>
<th>Attività</th>
<th>Lunghezza (km)</th>
<th>Dati qualificanti per la valutazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>37</td>
<td>Padova Est, Bassano</td>
<td>F. di Padova Est</td>
<td>Diretta con abbassamento lato E</td>
<td>NW-SE</td>
<td>55</td>
<td>Vedi i dati riportati per la Faglia di Bassano, n. 55.</td>
</tr>
<tr>
<td>57</td>
<td>37</td>
<td>Padova W, Marostica</td>
<td>F. di Padova Ovest</td>
<td>Diretta con abbassamento lato E</td>
<td>NNW-SSE</td>
<td>55</td>
<td>Assieme agli elementi lineari limitrofi concorre alla formazione della gradinata di blocchi degradanti verso NE. 86], p 441,443</td>
</tr>
</tbody>
</table>

Note: *) Dal confronto con 85], la sua attività cessa nel Pleistocene inferiore.
<table>
<thead>
<tr>
<th>Riferimento</th>
<th>Ubicazione</th>
<th>Nome della falga</th>
<th>Tipo di falga</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervallo di attività</th>
<th>Classificazione</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Adria, Vicenza, Schio, Besenello</td>
<td>Linea o Falga Schio-Vicenza</td>
<td>NW-SE</td>
<td>100</td>
<td>Tratto settentrionale: pre-Olocene Tratto centrale: Olocene Tratto meridionale: Pleistocene medio/Olocene</td>
<td>rA A</td>
<td></td>
</tr>
</tbody>
</table>

Nel tratto montuoso, lungo il suo svolgimento si notano allineamenti di valle e di selle, pareti fresche subverticali, deviazioni di corsi d'acqua, presenza di cataclisi con striature orizzontali.

Livellazioni di precisione nell'area berico-euganea hanno rilevato movimenti attuali con innalzamento del settore occidentale della falga.

La linea Schio-Vicenza è caratterizzata da sorgenti termali e da un allineamento di piccoli sismi anche recenti.

Ai notevoli riscontri crostali della linea Schio-Vicenza non corrispondono grandi evidenze di sismicita attuale.

L'unica "falga attiva" è situata nel settore meridionale ed è stata messa in evidenza da una linea sismica (649). Nei pressi di Conselve, sulla prosiezione S della linea Schio-Vicenza si ha una falga con un rigetto di circa 200 m riferito ad un orizzonte corrispondente alla base del Pleistocene.

Mediane rilevamenti morfotecnici di dettaglio nel settore tra la Val Govna e S.Vito di Leguzzano, tratto centrale della Schio-Vicenza, sono stati riconosciuti recenti movimenti di sollevamento differenziale del lato occidentale rispetto a quello orientale.

(*) Fascio di falghe a rigetto sia orizzontale che verticale. Nel tratto di pianura tutti gli Autori indicano un abassamento del lato orientale. Controversie per quanto riguarda la trascorrenza e il movimento nel tratto montano. (**) In genere sub-verticale; nel settore di pianura immersione verso NE con forte inclinazione. (***) Nell'area berico-euganea sollevamenti di 0,9 mm/anno nel periodo 1963-1978. (41) Nel suo tratto meridionale, dislocazione di 200 m di un orizzonte corrispondente alla base del Pleistocene. (49) A Nord di Poleo, in corrispondenza di una falga appartenente al fascio della Schio-Vicenza, 31 ha ricontrato un rigetto >100 m nel Pleistocene medio-Olocene. (****) "Attiva" in un tratto di 17 km a N di Conselve. (31)
<table>
<thead>
<tr>
<th>Nº Fiala</th>
<th>Fault n.</th>
<th>Ubicazione Location</th>
<th>Nome della foglia</th>
<th>Name of the fault</th>
<th>Tipo di foglia</th>
<th>Type of fault</th>
<th>Giacitura Attitude</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Class</th>
<th>Gradazioni Degree of Activity</th>
<th>Note</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>36</td>
<td>Malo</td>
<td>F. di Malo</td>
<td>*)</td>
<td>Fascio of faglie che abbassano il settore ad E</td>
<td>NW-SE</td>
<td></td>
<td>La foglia di Malo è morfologicamente caratterizzata dalla netta scarpata che separa i ribelli modellati nelle vulcaniti terziarie ad W e le colline costituite dalle Arenarie di S. Urbano, o la pianura alluvionale ad E. 65], p 79</td>
<td>rA</td>
<td></td>
<td>*) Con il nome "Faglia di Malo" si intende la parte del fascio di faglie della linea Schio-Vicenza che interessa le unità affioranti nel tratto tra Magrè Vicentino e Castelnuovo. 31]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>36</td>
<td>S. Vito di Leguzzano, Castenolo</td>
<td>***)</td>
<td></td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>25</td>
<td>Probabile dislocazione di paleosuperficie e di depositi oloecnici ad W di S. Vito di Leguzzano</td>
<td>Olocene</td>
<td>rA</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>36</td>
<td>Magré Vicentino</td>
<td>***)</td>
<td></td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>1v</td>
<td>Probabile dislocazione di forme oloecniche a S di Magré.</td>
<td>Olocene</td>
<td>rA</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>49</td>
<td>Isola Vicentina</td>
<td>***)</td>
<td></td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>n</td>
<td>Scarpata di faglia probabilmente attiva presso Isola Vicentina.</td>
<td>Pleistocene medio/Olocene</td>
<td>rA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>49</td>
<td>Isola Vicentina</td>
<td>***)</td>
<td></td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>1v</td>
<td>Probabile dislocazione di depositi alluvionali oloecnici a Vallorcola</td>
<td>Olocene</td>
<td>rA</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>36</td>
<td>S. Vito di Leguzzano</td>
<td>***)</td>
<td></td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>n</td>
<td>Probabile dislocazione di terrazzi oloecnici alluvionali presso Vanri</td>
<td>Olocene</td>
<td>rA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>36</td>
<td>S. Vito di Leguzzano</td>
<td>***)</td>
<td></td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>2-3v</td>
<td>Probabile dislocazione di terrazzo oloecnico alluvionale presso Vanri</td>
<td>Olocene</td>
<td>rA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Località</td>
<td>Ubicazione</td>
<td>Nome della falda</td>
<td>Tipo di falda</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervallo di attività</td>
<td>Classificazione</td>
<td>Note</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 60 | Schio, Piovene | Linea Marana, Piovene *) | **W** | **N** | 160° >100 | Olocene | rA II | *) Da 85] è indicata come estremità W della linea Bassano-Valdobbiadene (45). **) A seconda dei vari Autori si tratta di flessura, piega-falzia, falzia inversa o sovrascorrimento S vergente. ***) Dal Pleistocene medio. |}
| 61 | Guardia | Linea Marana, Piovene | Probabilmente diretta | v | 3v | 0,4 | Scarpa di falda probabilmente riaziata nel Postglaciale würmiano presso Guardia | Postglaciale würmiano | rA II | *) Appartenente al fascio della Linea Schio-Vicenza |
| 62 | Ondertol | Linea Marana, Piovene | Probabilmente diretta | v | >1v | 1,5 | Probabile dislocazione di forme postglaciali presso Ondertol | Postglaciale würmiano | rA II | *) Appartenente al fascio della Linea Schio-Vicenza |
| 63 | Dietrobeseno | Linea Marana, Piovene | Probabilmente diretta | v | 0,2-0,4v | 0,25 | Probabile dislocazione di depositi alluvionali postglaciali presso Dietrobeseno | Postglaciale würmiano | rA III | *) Appartenente al fascio della Linea Schio-Vicenza |
| 64 | Moietto | Linea Marana, Piovene | Probabilmente diretta | v | n | 3 | Scarpa di falda probabilmente riaziata nel Postglaciale presso Moietto | Postglaciale würmiano | rA | |

*) Secondo vari Autori si tratta di flessura, piega-falzia, falzia inversa o sovrascorrimento S vergente.
<table>
<thead>
<tr>
<th>n° Figura</th>
<th>Località</th>
<th>Nome della Figura</th>
<th>Ubicazione</th>
<th>Name of the fault</th>
<th>Tipo di flaglia</th>
<th>Type of fault</th>
<th>Dati qualificanti per la valutazione</th>
<th>Trace features</th>
<th>Intervallo attività</th>
<th>Period of activity</th>
<th>Classificazione</th>
<th>Degree of activity</th>
<th>Note</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Moietto</td>
<td>–</td>
<td>31</td>
<td>Probabilmente diretta</td>
<td>NNE-SSW</td>
<td>v</td>
<td>1,7</td>
<td>Probabile dislocazione di forme postglaciali presso Moietto</td>
<td>31], p 179</td>
<td>Postglaciale würmiano</td>
<td>rA</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Moietto</td>
<td>–</td>
<td>31</td>
<td>Probabilmente diretta</td>
<td>NNW-SSE</td>
<td>v</td>
<td>n</td>
<td>1,5</td>
<td>Scarpata di flaglia probabilmente riiativata nel Postglaciale presso Moietto</td>
<td>31], p 179</td>
<td>Postglaciale würmiano</td>
<td>rA</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>S. Nicolò</td>
<td>–</td>
<td>31</td>
<td>Probabilmente diretta</td>
<td>NW-SE</td>
<td>v</td>
<td>n</td>
<td>2,5</td>
<td>Scarpata di flaglia probabilmente riiativata presso S. Nicolò</td>
<td>31], p 179</td>
<td>Pre-Tardiglaciale würmiano</td>
<td>rA</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Lizzana</td>
<td>F. di Lizzana</td>
<td>31</td>
<td>Diretta con abbassamento lato NE</td>
<td>NW-SE</td>
<td>v</td>
<td>5</td>
<td>La grande frana olocone dei Lavini di Marco potrebbe essere stata scatenata da un evento sismoettonico accompagnato da movimenti differenziali lungo la flaglia di Lizzana, espressioni di una disarticolazione in atto del grande blocco tettonico di Coni Zagna</td>
<td>57], p 115</td>
<td>Olocene</td>
<td>rA</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Piana delle Fugazze, Recoaro Terme</td>
<td>F. della Piana delle Fugazze</td>
<td>43</td>
<td>*) NW-SE</td>
<td>v</td>
<td>17</td>
<td>Disloca creste ad andamento rettilineo e lungo tale elemento si notano allineamenti di valli e di selle, pareti fresche subverticali, deviazioni di corsi d'acqua</td>
<td>43], p 181</td>
<td>Plio-Pleistocene</td>
<td>rA</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) A seconda dei vari Autori è indicata come trascorrente destrorsa o con movimenti non definitibili.
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>F.L.G.M.I.</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Biologica necrofonia / Necrosofacies</th>
<th>Tipo di faglia</th>
<th>Giacitura Attitude</th>
<th>Direzione Slope</th>
<th>Inclinazione Dip angle</th>
<th>Dislocazione (m)</th>
<th>Displacement (km)</th>
<th>Lunghezza</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività</th>
<th>Classificazione Geologica</th>
<th>Spiegazione</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>49</td>
<td>M. Carega, Valle dei Ronchi</td>
<td>F. della Valle dei Ronchi</td>
<td>72] Diretta con abbassamento del lato NE</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>Grande faglia che separa l'horst degli Alti Lessini da quello del M. Carega. Lungo questa faglia si verifica erosione accelerata.</td>
<td>75], p 339</td>
<td>Plio-Quaternario</td>
<td>rA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>49</td>
<td>M. Feldo</td>
<td>-</td>
<td>43] A prevalente componente orizzontale sinistra</td>
<td>NE-SW</td>
<td>-</td>
<td>v</td>
<td>-</td>
<td>6</td>
<td>Sul versante destro della Valle del T. Agno disloca calcari cretacei ed oce nicici. Sposta creste a sviluppo rettilineo e in sua corrispondenza si possono notare deviazioni dei corsi d'acqua minori; anche la Valle del T. Agno subisce un sensibile cambiamento di direzione.</td>
<td>43], p 182</td>
<td>Plio-Pleistocene</td>
<td>rA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>49</td>
<td>S. Giovannini Ilario, Chiampo</td>
<td>-</td>
<td>43] A prevalente componente orizzontale sinistra</td>
<td>NW-SE</td>
<td>-</td>
<td>v</td>
<td>-</td>
<td>7</td>
<td>Disloca creste a sviluppo rettilineo. In corrispondenza dell'elemento si notano cambiamenti di direzione degli assi vallivi del T. Alpone e del T. Chiampo e della linea di spartiacque (dove mette a contatto calcari oecenici e vulcanici). Strie orizzontali sono chiaramente visibili nelle formazioni cretacee.</td>
<td>43], p 183</td>
<td>Plio-Pleistocene</td>
<td>rA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frazione</td>
<td>Ubicazione Location</td>
<td>Nome della taglia Name of the fault</td>
<td>Tipo di taglia Type of fault</td>
<td>Dati qualificanti per la valutazione Trace features</td>
<td>Intervallo di attività Period of activity</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Val d'Illasi</td>
<td>-</td>
<td>Sistema di taglia non definitibile</td>
<td>Fascia sismotettonica della Val d'Illasi: caratterizzata da un sistema di taglie a cui è collegata una forte erosione recente. È stata sede di attività sismica con anche rilevante intensità. Lungo la valle affiorano calcari cataclasiti e interessati da fratture e liscioni di taglia attribuibili all'elemento oggetto. Tuttavia, la morfologia ne i depositi oloccenici indicano movimenti recenti.</td>
<td>Plio-Quaternario</td>
<td>tA</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Alta Val Squaranto</td>
<td>-</td>
<td>Faglia con movimento non definito</td>
<td>Pur riportata dai numerosi Autori indicati, non ne risultano descritti i dati qualificanti. La sua attività si inquadrà nella evoluzione neotettonica dei M. Lessini</td>
<td>Plio-Pleistocene</td>
<td>tA</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Boscochie sanuova Tracchi</td>
<td>-</td>
<td>Diretta con abbassamento lato E</td>
<td>Faglia caratterizzata da una lunga scarsata, alta fra 50 e oltre 200 m, che per certi tratti costituisce i versanti di linea di taglia o la testata di conche, in altri si interrompe su ampie dorsali sottostanti.</td>
<td>Plio-Pleistocene</td>
<td>tA</td>
<td></td>
</tr>
<tr>
<td>n° Figlia</td>
<td>Location</td>
<td>Name of the fault</td>
<td>Type of fault</td>
<td>Attitude</td>
<td>Dipole</td>
<td>Dip angle</td>
<td>Length</td>
<td>Period of activity</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Vajo dell'Anguilla</td>
<td>F. del Vajo dell'Anguilla</td>
<td>Diretta con abbassamento lato E</td>
<td>E</td>
<td>70°</td>
<td>80°</td>
<td>7</td>
<td>Fuglia caratterizzata da una delle scarpe più spettacolari dei Lessini medi, che presenta una notevole continuità. L'altezza si aggira sui 200 metri. Che si tratti di scarpata di figlia risulta da alcuni caratteri geologici nella parte meridionale della valle. Essa è stata con ogni probabilità ravvivata da episodi neotettonici recenti; perfetta conservazione di pareti di figlia riferibili con ragionevole certezza al Postglaciale. 73], p 41, 42</td>
<td>Post-glaciale 72]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Corso</td>
<td>Non definito *)</td>
<td>NNW - SSE</td>
<td>V</td>
<td>n</td>
<td></td>
<td>2</td>
<td>In rapporto a questa linea si riconosce una scarpata orientata verso W costituita per certi tratti da pareti in roccia che nel settore più settentrionale superano l'altezza di 20 m. 72], p 42</td>
<td>Pleistocene medio - Olocene 60]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*) Le caratteristiche geometriche riportate sono quelle indicate da 60]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Faglia / Fault n.</td>
<td>Ubicazione / Location</td>
<td>Località / Locality</td>
<td>Nome della faglia / Name of the fault</td>
<td>Tipo di faglia / Type of fault</td>
<td>Giacitura / Dip.</td>
<td>Imperviosità / Permeability</td>
<td>Dati qualificanti per la valutazione / Trace features</td>
<td>Intervalli di attività / Period of activity</td>
<td>Classificazione e grado di attività / Classification and degree of activity</td>
<td>Note / Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>49</td>
<td>Il Dosso di Bellori W</td>
<td>*)</td>
<td>NWW-SSE</td>
<td>W</td>
<td>n</td>
<td>3</td>
<td>Pleistocene 60]</td>
<td>tA</td>
<td>*) A seconda degli Autori, è di tipo non definito o diretta con abbassamento lato W; le caratteristiche geometriche riportate sono quelle indicate da 60]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>49</td>
<td>Orsara F. del "Graben di Orsara"</td>
<td>Coppia di faglie sub-parallelle che abbas- sano la conca di Orsara *)</td>
<td>NNW-SSE</td>
<td>v</td>
<td>n</td>
<td>1,5</td>
<td>Tardo-Pleistocene od Olocene 72]</td>
<td>tA</td>
<td>*) Nella carta delle faglie attive (Tav. 1), il sistema è rappresentato con un unico elemento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n° Faglia</td>
<td>Ubicazione</td>
<td>Nome della faglia</td>
<td>Tipo di faglia</td>
<td>Dati qualificanti per la valutazione Trace features</td>
<td>Intervento di attività Period of activity</td>
<td>Classificazione</td>
<td>Nota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>48</td>
<td>M.Noroni</td>
<td>Diretta con abbassamento lato SE</td>
<td>Piano di faglia visibile in più punti (contatto tetttonico tra Scaglia Rossa e vulcaniti paleogeniche). La faglia è caratterizzata da un allineamento di scarpate di faglia ben evidenti e conservate. 19], p 66</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>48</td>
<td>M.Pastello, M.Pastelletto</td>
<td>NE-SW</td>
<td>Le faglie di M.Pastelletto-M.Pastello-La Rocca delimitano un "horst" attivo nell'Olocene sia per la freschezza delle scarpate delimitanti sia per l'azione di sbarramento operata sull'Adige in corrispondenza della Chiusa di Ceraino 73], p 256</td>
<td>Olocene 73]</td>
<td>rA</td>
<td>*) Riportata in vario modo e con vari movimenti a seconda degli Autori. Uno studio di dettaglio (18]) la indica come faglia inversa, E vergente, con caratteri di sovrascorrimento; le caratteristiche giaciturali sono quelle indicate da questo lavoro.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervento di attività Period of activity</th>
<th>Classificazione</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>48</td>
<td>M.Noroni</td>
<td>Diretta con abbassamento lato SE</td>
<td>Piano di faglia visibile in più punti (contatto tetttonico tra Scaglia Rossa e vulcaniti paleogeniche). La faglia è caratterizzata da un allineamento di scarpate di faglia ben evidenti e conservate. 19], p 66</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
</tr>
<tr>
<td>81</td>
<td>48</td>
<td>M.Pastello, M.Pastelletto</td>
<td>NE-SW</td>
<td>Le faglie di M.Pastelletto-M.Pastello-La Rocca delimitano un "horst" attivo nell'Olocene sia per la freschezza delle scarpate delimitanti sia per l'azione di sbarramento operata sull'Adige in corrispondenza della Chiusa di Ceraino 73], p 256</td>
<td>Olocene 73]</td>
<td>rA</td>
<td>*) Riportata in vario modo e con vari movimenti a seconda degli Autori. Uno studio di dettaglio (18]) la indica come faglia inversa, E vergente, con caratteri di sovrascorrimento; le caratteristiche giaciturali sono quelle indicate da questo lavoro.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervento di attività Period of activity</th>
<th>Classificazione</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>48</td>
<td>M.Noroni</td>
<td>Diretta con abbassamento lato SE</td>
<td>Piano di faglia visibile in più punti (contatto tetttonico tra Scaglia Rossa e vulcaniti paleogeniche). La faglia è caratterizzata da un allineamento di scarpate di faglia ben evidenti e conservate. 19], p 66</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
</tr>
<tr>
<td>81</td>
<td>48</td>
<td>M.Pastello, M.Pastelletto</td>
<td>NE-SW</td>
<td>Le faglie di M.Pastelletto-M.Pastello-La Rocca delimitano un "horst" attivo nell'Olocene sia per la freschezza delle scarpate delimitanti sia per l'azione di sbarramento operata sull'Adige in corrispondenza della Chiusa di Ceraino 73], p 256</td>
<td>Olocene 73]</td>
<td>rA</td>
<td>*) Riportata in vario modo e con vari movimenti a seconda degli Autori. Uno studio di dettaglio (18]) la indica come faglia inversa, E vergente, con caratteri di sovrascorrimento; le caratteristiche giaciturali sono quelle indicate da questo lavoro.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervento di attività Period of activity</th>
<th>Classificazione</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>48</td>
<td>M.Noroni</td>
<td>Diretta con abbassamento lato SE</td>
<td>Piano di faglia visibile in più punti (contatto tetttonico tra Scaglia Rossa e vulcaniti paleogeniche). La faglia è caratterizzata da un allineamento di scarpate di faglia ben evidenti e conservate. 19], p 66</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
</tr>
<tr>
<td>81</td>
<td>48</td>
<td>M.Pastello, M.Pastelletto</td>
<td>NE-SW</td>
<td>Le faglie di M.Pastelletto-M.Pastello-La Rocca delimitano un "horst" attivo nell'Olocene sia per la freschezza delle scarpate delimitanti sia per l'azione di sbarramento operata sull'Adige in corrispondenza della Chiusa di Ceraino 73], p 256</td>
<td>Olocene 73]</td>
<td>rA</td>
<td>*) Riportata in vario modo e con vari movimenti a seconda degli Autori. Uno studio di dettaglio (18]) la indica come faglia inversa, E vergente, con caratteri di sovrascorrimento; le caratteristiche giaciturali sono quelle indicate da questo lavoro.</td>
</tr>
<tr>
<td>Nr. Faglia</td>
<td>Località (Locality)</td>
<td>Bibl. Neolitica (Prehistoric Reference)</td>
<td>Tipo di faglia (Type of fault)</td>
<td>Giacitura (Dip)</td>
<td>Inclinazione (Dip Angle)</td>
<td>Lunghezza (Length)</td>
<td>Dati qualificanti per la valutazione (Trace features)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>82</td>
<td>M. Fumana</td>
<td>38, 78, 19, 60</td>
<td>Diretta con abbassamento lato W</td>
<td>NNW-SSE</td>
<td>W</td>
<td>5</td>
<td>Contatto per faglia tra dolomie triassiche e calcari giurassici marcati da un evidente allineamento di una sarscata assai poco degradata e di una valle rettilinea. 19], p 67,68</td>
</tr>
<tr>
<td>83</td>
<td>Valgatara</td>
<td>19, 60</td>
<td>Diretta</td>
<td>NW-SE</td>
<td>S</td>
<td>0,5</td>
<td>Contatto secondo un piano di faglia tra substrato calcareo e paleosuolo datato al Pleistocene inferiore-medio 19], p 63-66</td>
</tr>
<tr>
<td>84</td>
<td>Quinto di Valpantena</td>
<td>60</td>
<td>Probabilmente diretta con abbassamento lato S</td>
<td>W-E</td>
<td>n</td>
<td>0,5</td>
<td>Allineamento di sella, vallecola e fosso rettilineo profondamente inciso. Il tipo di movimento è ricavato da dati bibliografici. 60], p 198</td>
</tr>
<tr>
<td>85</td>
<td>Mizzola</td>
<td>60</td>
<td>Probabilmente diretta con abbassamento lato S</td>
<td>W-E</td>
<td>n</td>
<td>1</td>
<td>Aree in frana, fosso e vallecola rettilinei allineati. Il movimento è ricavato da dati bibliografici. 60], p 198</td>
</tr>
<tr>
<td>n° Foglia</td>
<td>Fault n.</td>
<td>Ubicazione Location</td>
<td>Nome della foglia Name of the fault</td>
<td>Bibliografia Neotecnica Neotecnica Reference</td>
<td>Tipo di foglia Type of fault</td>
<td>Giacitura Attitude</td>
<td>Intervallo di attività Period of activity</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>86</td>
<td>49</td>
<td>Nord di Verona</td>
<td>60]</td>
<td>Probabilmente diretta con abbassamento lato S</td>
<td>W-E</td>
<td>n</td>
<td>2</td>
</tr>
<tr>
<td>87</td>
<td>48</td>
<td>Valverde (S. Ambro...</td>
<td>19]</td>
<td>Non definito</td>
<td>NW-SE</td>
<td>n</td>
<td>2</td>
</tr>
<tr>
<td>88</td>
<td>48</td>
<td>Montecio (S. Ambro...</td>
<td>19]</td>
<td>Probabilmente diretta</td>
<td>E-W</td>
<td>0,1v</td>
<td>0,2</td>
</tr>
<tr>
<td>n° Follia</td>
<td>Ubicazione Location</td>
<td>Nome della foglia Name of the fault</td>
<td>Bibliografia geologica Geology references</td>
<td>Tipo della foglia Type of fault</td>
<td>Glacitatura Attitude</td>
<td>Diritto Immagine Dipping</td>
<td>Inclinazione Dip Angle</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>89</td>
<td>Domegliara, Verona, S. Bonifacio</td>
<td>Linea dell'Adige o di Verona</td>
<td>41 75 45 64 85 82 18 60 78 76 1</td>
<td>*) WNW-ESE</td>
<td>n n 35</td>
<td>Numerose salienze di acque termalizzate radioactive allineate secondo la direttrice dell'alveo del F. Adige. Presenza nel sottosuolo dell'alta pianura veronese di masse calcarea chiaramente tettonizzate. 4), p 646, 649 L'Adige tra Domegliara e S. Bonifacio corre in modo anomalo nella parte più elevata della pianura lambendo i rilievi collinari 64), p 593 Marcati indizi morfoneotettonici, anche se radi, al passaggio Lessini-pianura (rilievi isolati, brusca troncatura dei rilievi etc.). Notevole subsidenza a partire dal Riss-Würm nella pianura ad E di Verona. 18), p 485, 486 La sismicità storica è medio-alta e concentrata soprattutto al passaggio fra Lessini e pianura 78), p 64 La Faglia di Verona, è una struttura sismotettonicamente rilevante. 76] In corrispondenza della "Fascia di deformazione del bordo meridionale dei Lessini" si verifica un'influsso dell'isolina - 75 dei movimenti verticali del suolo 1], p 137</td>
<td>Pleistocene medio-Olocene</td>
</tr>
<tr>
<td>n° Fault n.</td>
<td>Location</td>
<td>Name of the fault</td>
<td>Type of fault</td>
<td>Direction</td>
<td>Inclination</td>
<td>Displacement</td>
<td>Length</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>90</td>
<td>64</td>
<td>Arquà Pera</td>
<td>*E-W</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>64</td>
<td>M. Venda</td>
<td>*WSE-ENE</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>50</td>
<td>Settore Colli E-</td>
<td>NNW-SSE</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n° Fa.</td>
<td>Ubicazione</td>
<td>Nome della fa</td>
<td>Bibliografia</td>
<td>Tipo di fa</td>
<td>Giacitura</td>
<td>Dati qualificanti per la valutazione Trace features</td>
<td>Intervallo di attività Period of activity</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>93</td>
<td>M.Bre (S.Vigilio)</td>
<td>-</td>
<td>19] 30] 60] 24]</td>
<td>Probabilmente diretta con abbassamento lato SW</td>
<td>NW-SE</td>
<td>n</td>
<td>0,9 Faglia caratterizzata morfologicamente da una netta scarpata con evidenti contropendenze allineate ai piedi della medesima.</td>
</tr>
<tr>
<td>94</td>
<td>Brancolino (S.Vigilio)</td>
<td>-</td>
<td>19] 30] 60] 24]</td>
<td>Probabilmente diretta con abbassamento lato SW</td>
<td>NW-SE</td>
<td>v</td>
<td>1,2v In due punti è visibile un contatto laterale tra substrato calcareo e depositi morenici würmiani secondo un piano di faglia con strie tettoniche.</td>
</tr>
<tr>
<td>n° Falga</td>
<td>Faluj n.</td>
<td>Ubicazione/Locality</td>
<td>Nome della faluga/Name of the fault</td>
<td>Tipo di faluga/Type of fault</td>
<td>Giacitura Attitude</td>
<td>Dati qualificanti per la valutazione/Trace features</td>
<td>Intervallo di attività/Period of activity</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>95</td>
<td>48</td>
<td>Sirmione, Garda</td>
<td>F.Sirmione-Garda</td>
<td>*) NNE-SSW</td>
<td>18</td>
<td>Probabilmente Olocene</td>
<td>18]</td>
</tr>
</tbody>
</table>

18], p 68

La faluga separa due aree, la più settentrionale delle quali è caratterizzata dai solchi di battente della falesea di Manerba; la zona meridionale si distingue per il fatto che i cordoni morenici frontalì interni, dell’anfiteatro benacense, si trovano a quote inferiori delle linee di riva più elevate sottende (Tardiglaciale? - Olocene).

5], p 60

Basculamento della piattaforma costiera di abrasione oloocene e dei conglomerati attribuiti al Pleistocene inf. 30], p 224 60], p 197

*) A seconda degli Autori è indicata come diretta, inversa o con movimento non definito; tuttavia, la maggior parte di essi indica un abbassamento del lato SE.

**) Nell’Olocene.
<table>
<thead>
<tr>
<th>n° Faglia Fault n°</th>
<th>Ubicazione Location</th>
<th>Nomenclatura della faglia Name of the fault</th>
<th>Bibliografia Book</th>
<th>Tipo di faglia Type of fault</th>
<th>Giacitura Attitude</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervall...</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>S.Felice del Benaco-Moniga del Garda</td>
<td>Sistema gardesano</td>
<td>15]</td>
<td>*) NE-SW</td>
<td>5**</td>
<td>Nel Pliocene sup.-Pleistoceno controliano l'evoluzione della costa occidentale del L. di Garda. 15], p 192 Tagliano depositi quaternari cfr.69], All.IV, Prof.8b Non sono stati individuati elementi che evidenziano un'attività Olocenica 5], p 60 Sia la sismicità storica che quella attuale individuano come attive le strutture neotettoniche costituite dagli accavallamenti della sponda occidentale del Garda. 77], p 38</td>
<td>Plio-Quaternario tA</td>
<td>*) A seconda degli Autori è indicato come un sistema di sovrascorrimenti o un sistema di faglie in...</td>
</tr>
<tr>
<td>48</td>
<td>Rocca di Manerba Appartiene al Sistema gardesano</td>
<td>30]</td>
<td>Inversa NE-SW</td>
<td>NW</td>
<td>10v</td>
<td>1,5</td>
<td>Defor...</td>
<td>Pleistocene medio-Olocene tA III</td>
</tr>
</tbody>
</table>

**) Ciascun elemento del sistema
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>n° N.</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Glacitura</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>47</td>
<td>Toscola-</td>
<td>F.della Riviera</td>
<td>*)</td>
<td>NE-SW</td>
<td>20</td>
<td>Olocene 5]</td>
<td>tA</td>
<td>*) E' riportata in modo diverso a seconda degli Autori: sovrascorrimiento, faglia inversa, faglia con caratteristiche non definibili; tuttavia tutti concordano nell'indicare un sollevamento del lato W.</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>no, Salò'</td>
<td>gardesana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Nel Pliocene sup.-Pleistocene separa aree a tendenza evolutiva diversa. (15), p 192,194
- Taglia depositi quaternari. (69), All.IV prof.8b
- Alla sua attività sono collegabili i ripetuti ed intensi eventi sismici della costa gardesana tra Gavardo e Salò (13), p 15-18
- La faglia della Riviera gardesana disgiunge due zone caratterizzate dalla dislocazione di una linea di riva oloocene precedentemente al Neolitico inferiore, con un innalzamento relativo dell'entità di circa 1 m del settore a N di Salò rispetto a quella a S che si sarebbe verificato in età oloocene. (5), p 60
- Sia la sismicità storica che quella attuale individuano come attivi gli accavallamenti della sponda occidentale del Garda. (77), p 39
<table>
<thead>
<tr>
<th>n° Faglia Fault n.</th>
<th>Ubicazione Location</th>
<th>Nome della faglia Name of the fault</th>
<th>Bibliografia Neotecnica reference</th>
<th>Tipo di faglia Type of fault</th>
<th>Giacitura Attitude</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>48</td>
<td>Colle S.Bartolomeo di Salò</td>
<td>45</td>
<td>15</td>
<td>38</td>
<td>5</td>
<td>78</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>a 48</td>
<td>Colle S.Bartolomeo di Salò</td>
<td>Diretta NW-SE</td>
<td>100ºv 1,5</td>
<td>Dislocazione che interessa depositi attribuiti al Messiniano - Pliocene sup.? - Pleistocene inf.?</td>
<td>Quaternario rA II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b 48</td>
<td>Colle S.Bartolomeo di Salò</td>
<td>Diretta NW-SE</td>
<td>100ºv 1,5</td>
<td>Dislocazione che interessa depositi attribuiti al Messiniano - Pliocene sup.? - Pleistocene inf.?</td>
<td>Quaternario rA II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c 48</td>
<td>Colle S.Bartolomeo di Salò</td>
<td>Diretta NW-SE</td>
<td>100ºv 1,5</td>
<td>Dislocazione che interessa depositi attribuiti al Messiniano - Pliocene sup.? - Pleistocene inf.?</td>
<td>Quaternario rA II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>47</td>
<td>Gavardo</td>
<td>39</td>
<td>60</td>
<td>*) NW-SE</td>
<td>Terreni del Pleistocene appaiono fessi e basculati verso Sud con traccia di stress tettonico. cfr. 39]</td>
<td>Pleistocene, probabilmente Olocene</td>
<td>A</td>
<td>*) Si tratta di una piega o di una faglia.</td>
</tr>
<tr>
<td>n° Faglia</td>
<td>Fault n.</td>
<td>Ubicazione</td>
<td>Location</td>
<td>Nome della faglia</td>
<td>Name of the fault</td>
<td>Tipo di faglia</td>
<td>Type of fault</td>
<td>Direzione</td>
<td>Strike</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>100</td>
<td>47</td>
<td>Clilverge</td>
<td></td>
<td></td>
<td></td>
<td>Sistema di faglie e fratture</td>
<td>NNW-SSE</td>
<td>v</td>
<td>1v</td>
</tr>
<tr>
<td>101</td>
<td>47</td>
<td>Castenedolo</td>
<td></td>
<td></td>
<td></td>
<td>Non definito</td>
<td>NNE-SSW</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>102</td>
<td>47</td>
<td>Castenedolo-Capodimonte</td>
<td></td>
<td></td>
<td></td>
<td>Sistema di piccole faglie dirette</td>
<td>NNE-SSW</td>
<td>ESE 60^0</td>
<td>1v</td>
</tr>
<tr>
<td>n° Failla</td>
<td>Fault n.</td>
<td>Ubicazione</td>
<td>Location</td>
<td>Nome della failla</td>
<td>Name of the fault</td>
<td>Bibliografia</td>
<td>Geoelettrica</td>
<td>Direzione</td>
<td>Immagine</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>103</td>
<td>47</td>
<td>Castenedolo-Capodimonte</td>
<td>-</td>
<td>6]</td>
<td>7]</td>
<td>60]</td>
<td>WSW</td>
<td>ENE</td>
<td>n</td>
</tr>
<tr>
<td>104</td>
<td>47</td>
<td>Nave, Gussago</td>
<td>13]</td>
<td>F.Nave-Gussago</td>
<td>14]</td>
<td>Inversa con scarico sinistro</td>
<td>E-W</td>
<td>NNW</td>
<td>80°</td>
</tr>
</tbody>
</table>

I più recenti eventi sismici interessanti il territorio di Brescia (1981 e 1982, III° e IV° Mercalli) si sono verificati in una fascia di territorio compresa tra la "Linea di Brescia" e la "Faglia Nave-Gussago". 13], p 15-18
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Ubicazione Location</th>
<th>Nome della faglia</th>
<th>Name of the fault</th>
<th>Tipo di faglia</th>
<th>Giacitura Attitude</th>
<th>Direzione Strike</th>
<th>Incidenza Dip Angle</th>
<th>Ripetto (m) Displacement</th>
<th>Lunghezza (Km) Length</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Grado di attività Degree of activity</th>
<th>Note Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>47</td>
<td>M.Rozzo-</td>
<td>-</td>
<td>Probabilmente inversa con sollevamento lato NE</td>
<td>NW-SE</td>
<td>-</td>
<td>v</td>
<td>n</td>
<td>2</td>
<td>Foglia caratterizzata da indizi morfologici particolarmente freschi: faccetta triangolare, linea di ignota natura, contropendenza, fosso.</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
<td>) Non specificati</td>
</tr>
<tr>
<td>106</td>
<td>47</td>
<td>Villa</td>
<td>-</td>
<td>Probabilmente inversa con sollevamento lato NE</td>
<td>WNW-</td>
<td>-</td>
<td>v</td>
<td>n</td>
<td>4</td>
<td>Contatto tettonico fra calcari e dolomie con zone cataclastiche. Allineamento di numerosi e vari indizi geomorfologici congruenti*).</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
<td>(*) Non specificati</td>
</tr>
<tr>
<td>107</td>
<td>47</td>
<td>M.Conche</td>
<td>-</td>
<td>Probabilmente inversa con sollevamento lato NE</td>
<td>NW-SE</td>
<td>-</td>
<td>v</td>
<td>n</td>
<td>3,5</td>
<td>Foglia caratterizzata da un allineamento di valli rettilinee e di discontinue altimetriche di crinale.</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>47</td>
<td>Cairo</td>
<td>-</td>
<td>Inversa con componente trascorrente sinistra</td>
<td>NW-SE, NE</td>
<td>-</td>
<td>v</td>
<td>n</td>
<td>9</td>
<td>Numerosi ed evidenti piani di foglia con strie tettoniche e fasce cataclastiche in dolomie e calcari triassici. Allineamento di numerosi e vari indizi geomorfologici *)</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td>-</td>
<td>(*) Non specificati</td>
</tr>
<tr>
<td>n°</td>
<td>Tipo di taglio</td>
<td>Località</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervallo di attività</td>
<td>Classificazione stratigrafica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>----------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Probabilmente trascorsa con componente trascorsa</td>
<td>Porle</td>
<td>Allineamento di doppi gomiti torrentizi, fossi e contropendenze; indizi particolarmente freschi ed evidenti.</td>
<td>Pleistocene medio-Olocene</td>
<td>tA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Probabilmente trascorsa con componente trascorsa</td>
<td>M. Pino</td>
<td>Fascie con cataclasiti, rocce fratturate e specchi di faglia che trovano espressione morfologica in un allineamento di aree in erosione, discontinuità piano-altimetrica di crinale, sella, fossi.</td>
<td>Pleistocene medio-Olocene</td>
<td>tA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Inversa con componente trascorsa</td>
<td>Binzago, Oriolo</td>
<td>Numerose fasce con cataclasiti e alcuni lischi di faglia. Evidente allineamento di valli rettilinee, scarpe, contropendenza, sella e linea di ignota natura.</td>
<td>Pleistocene medio-Olocene</td>
<td>tA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Inversa</td>
<td>Caschino, Sopraponte</td>
<td>Dolomia Principale chiaramente fagliata. Lungo lo sviluppo della faglia si notano numerosi indizi morfologici particolarmente freschi ed evidenti*.</td>
<td>Pleistocene medio-Olocene</td>
<td>tA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Non specificati.
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Fault n.</th>
<th>Ubicazione</th>
<th>Locality</th>
<th>Nome della faglia</th>
<th>Name of the fault</th>
<th>Tipo di faglia</th>
<th>Type of fault</th>
<th>Direzione Immersione</th>
<th>Strike</th>
<th>Inclinazione Dip Angle</th>
<th>Length</th>
<th>Lunghezza (km)</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Grado di attività Degree of activity</th>
<th>Note</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>48</td>
<td>Pompignino</td>
<td>–</td>
<td>60] Non defini-bile</td>
<td>E-W</td>
<td>n</td>
<td>n</td>
<td>4</td>
<td>Faglia caratterizzata da un allineamento di scarpate rettilinee, fossi, contro-pendenze e sella. 60], p 197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>48</td>
<td>Val Venardo</td>
<td>F. della Val Venardo</td>
<td>8] Fascio di dislocazioni con sollevamento lato N e componente transcorrente destra</td>
<td>WNW- ESE</td>
<td>n</td>
<td>n</td>
<td>3</td>
<td>Dislocazione non riconducibile ad un singolo elemento. Lungo il suo percorso si hanno zone cataclasiata assai ampie e la roccia in più punti tende a divenire "pulverulenta" ("spolverina"). E’ definita da numerosi elementi morfotettonici (gomiti lungo il T.Aguna, valli rettilinee ed incise, scarpate, contro-pendenze etc.). 82], p 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>48</td>
<td>Val Degan-na</td>
<td>F. della Val Degana N</td>
<td>8] Non defini-bile con sollevamento lato W</td>
<td>NNE- SSW</td>
<td>v</td>
<td>-</td>
<td>3</td>
<td>Faglia impostata nella “Dolomia Principale”. E’ caratterizzata da fasce intensamente milonitizzate con fenomeni di ricementazione diffusi. Lungo il suo decorso sono presenti alcuni specchi di faglia, uno dei quali molto evidente e "fresco". Nel tratto settentrionale sono presenti, lungo il versante destro della valle, alcune “facette triangolari” 81], p 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n° Figlia Fault n.</th>
<th>Ubicazione Location</th>
<th>Nome della figlia Name of the fault</th>
<th>Bibliografia References</th>
<th>Tipo di figlia Type of fault</th>
<th>Glacitura Attitude</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>Pesina</td>
<td>-</td>
<td>30] 60]</td>
<td>Probabilmente trasversale sinistra con componente verticale (solla- vamente lato SW)</td>
<td>NW-SE</td>
<td>1,5 Figlia morfologicamente caratterizzata da piccole scarpate e doline dislocate. 60], p 198</td>
<td>Pleistocene medio-Olocene</td>
<td>rA</td>
<td></td>
</tr>
<tr>
<td>n° Failla</td>
<td>F.I.G.M.L.</td>
<td>Locality</td>
<td>Name of the fault</td>
<td>Bibliografia neotectonica reference</td>
<td>Tipo di fallo</td>
<td>Giacitura</td>
<td>Attitude</td>
<td>Diritzione</td>
<td>Inclinazione</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>118</td>
<td>48</td>
<td>Pradonego</td>
<td>*)</td>
<td>30]</td>
<td>Probabilmente inversa</td>
<td>NNE-SNW</td>
<td>v</td>
<td>n</td>
<td>2,5</td>
</tr>
<tr>
<td>No. Fault</td>
<td>Fault n.</td>
<td>Ubicazione Location</td>
<td>Nome della faglia Name of the fault</td>
<td>Tipo di faglia Type of fault</td>
<td>Giacitura Attitude</td>
<td>Dati qualificanti per la valutazione Trace features</td>
<td>Intervallo di attività Period of activity</td>
<td>Classificazione Class</td>
<td>Grado di attività Degree of activity</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>120</td>
<td>35</td>
<td>Valletta di Naole</td>
<td>F. della Valletta di Naole</td>
<td>Diretta con abbassamento lato E "Surface faulting"</td>
<td>NNE-SSW</td>
<td>NNE-SSW</td>
<td>50°</td>
<td>5</td>
<td>Paretina ad andamento "nastriforme" che disloca il versante sezione alato sia gli sporni che le vallecole; è particolarmente ben conservata e sicuramente post-würmiana, come si deduce dal confronto con le superfici dei campi glaciocarsici della Val d'Adige. 74), p 253</td>
</tr>
<tr>
<td>n° Faglia</td>
<td>Lato</td>
<td>Ubicazione / Location</td>
<td>Nome della faglia / Name of the fault</td>
<td>Bibliografia / References</td>
<td>Tipo di faglia / Type of fault</td>
<td>Giacitura / attitude</td>
<td>Dati qualificanti per la valutazione / Trace features</td>
<td>Intervallo di attività / Period of activity</td>
<td>Classificazione / Classification</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>121</td>
<td>35</td>
<td>M.Maggiore, Cima Valdritta (versante W)</td>
<td>75</td>
<td>Probabilmente diretta con abassamento lato W</td>
<td>NNE-SSW</td>
<td>50</td>
<td>20-30v</td>
<td>Scarpata sinuosa, nastriforme, di altezza pressoché costante (20-30 m). Lo stato di degrado della scarpa e il grado di sviluppo delle microforme carsiche permettono di ipotizzare un'età tardiglacia (10.000-15.000 anni b.P.) 27j, p 33</td>
<td>Tardiglacia</td>
</tr>
<tr>
<td>122</td>
<td>35</td>
<td>M.Altissimo di Nago (versante E)</td>
<td>75</td>
<td>*)</td>
<td>NW-SE</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>Faglia sul fianco orientale dell'anticline del M. Altissimo di Nago caratterizzata da una scarpata lungo la quale si sono verificate numerose frane. 75j, p 338, 341</td>
</tr>
<tr>
<td>123</td>
<td>35</td>
<td>P.s.o. S.Giovanni Navese</td>
<td>30</td>
<td>Probabilmente diretta</td>
<td>NNE-SSW</td>
<td>1v</td>
<td>2,5</td>
<td>Deformazione della superficie topografica, evidenziata da una contropendenza. 30j, p 224</td>
<td>Olocene</td>
</tr>
<tr>
<td>124</td>
<td>35</td>
<td>Valle S.Felice-Manziano</td>
<td>30</td>
<td>*)</td>
<td>NW-SE</td>
<td>1v</td>
<td>4,5</td>
<td>Faglia caratterizzata da una successione di selle allineate, impostate lungo brevi contropendenze di versante; modeste discontinuità altimetriche del cri nale di M.Bugno. 30j, p224</td>
<td>Pleistocene medio-Olocene</td>
</tr>
<tr>
<td>n° Foglia</td>
<td>Località</td>
<td>Ubicazione</td>
<td>Nome della foglia</td>
<td>Tipo di foglia</td>
<td>Gliaciatura</td>
<td>Dati qualificanti per la valutazione</td>
<td>Intervallo di attività</td>
<td>Classificazione</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>125</td>
<td>M.Stivo, C.Verde</td>
<td>35, 36</td>
<td>–</td>
<td>75</td>
<td>W-E</td>
<td>NE-SW</td>
<td>20</td>
<td>Agli elementi M.Stivo, Palon, C.Verde corrisponde una grande scarpata tettunica con caratteri di discreta freschezza e continuità. 75, p 339</td>
<td>Plio-Pleistocene</td>
</tr>
<tr>
<td>126</td>
<td>Drena, M.Ben</td>
<td>35</td>
<td>–</td>
<td>30</td>
<td>Probabilmente diretta</td>
<td>NNE-SSW</td>
<td>v</td>
<td>3</td>
<td>Faglia caratterizzata da scarpata rettilinea e da contropendenze parallele. 30, p 224</td>
</tr>
<tr>
<td>127</td>
<td>Ceniga, Castello d'Arco</td>
<td>35</td>
<td>–</td>
<td>30</td>
<td>Probabilmente diretta</td>
<td>NNE-SSW</td>
<td>v</td>
<td>3</td>
<td>Scarpata particolarmente fresca e rettilinea con frane di crollo allineate. 30, p 224</td>
</tr>
<tr>
<td>128</td>
<td>Ceniga, Arco</td>
<td>35</td>
<td>–</td>
<td>30</td>
<td>Probabile trascorrente sinistra</td>
<td>NNE-SSW</td>
<td>v</td>
<td>3</td>
<td>Scarpata discontinua con specchi di faglia recanti serie di frizione scagionate lungo tutta la base (località Aquel). 30, p 224</td>
</tr>
</tbody>
</table>

Notes:
- W-E: West-East
- NE-SW: North-East-South-West
<table>
<thead>
<tr>
<th>N° Faglia</th>
<th>Località</th>
<th>Name of the fault</th>
<th>Tipo di faglia</th>
<th>Giacitura Attitudine</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervento di attività Period of activity</th>
<th>Classificazione Classificazione</th>
<th>Note</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 129 | Cima Nanzone, Arco | – | 30 | Probabile trascorrente sinistra | NE-SW | 1 | 10 | Successione di scarse e discontinuità pluvalimetriche, nelle linee di cresta a NW di Arco, particolarmente evidenciati.
30, p 224 |
| 130 | Lago di Cavedine, Dro, Padar | Linea del Sarca | 75 | (*) | NNE-SSW | v | 40 | Durante il Postglaciale le grandi e ben conservate scarpate con pareti tettoniche del versante orientale del M.Biaia-M.Brento sono state interessate da gigantesche frane.
75, p 337, 341 |
| | | | 45 | | | v | (*) | La linea del Garda-Sarca ha mostrato movimenti recenti e appare potenzialmente sismogenetica.
64, p 600 |
| | | | 64 | | | | | Le pareti nell'ambito del versante E della dorsale M.Brento-M.Biaina sono formate perfettamente rettilinee. In particolare la parete situata poco ad W di Dro è poco degradata e coincidente in buona parte con superficie di faglia.
27, p 21 |
| | | | 85 | | | | | Scarpate fresche e rettilinee che interessano anche i depositi della morra di Dro.
30, p 223 |
| | | | 38 | | | | | Si può forse soltanto pensare che la scarpata al margine meridionale del Ld. Cavedine, che lacerca l'accumulo di frana, corrisponda ad una sottostante faglia attiva in roccia di debole rigetto che avrebbe controllato l'evoluzione lineare della sponda.
26, p 17 |
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Frazione</th>
<th>Ubicazione</th>
<th>Location</th>
<th>Nome della faglia</th>
<th>Name of the fault</th>
<th>Tipo di faglia</th>
<th>Type of fault</th>
<th>Giacitura Attitude</th>
<th>Trace features</th>
<th>Dati qualificanti per la valutazione</th>
<th>Intervallo di attività</th>
<th>Period of activity</th>
<th>Classificazione</th>
<th>Classification</th>
<th>Nota</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>35</td>
<td>Padaro</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>Diretta con abbassamento del lato NE</td>
<td>NNW-SSE</td>
<td>NE</td>
<td>70°</td>
<td>0,5-0,6v</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>20</td>
<td>M. Lomasso (versante E)</td>
<td>–</td>
<td>75</td>
<td>*)</td>
<td>NNE-SSE</td>
<td>–</td>
<td>–</td>
<td>11</td>
<td>–</td>
<td>All'elemento Misone E corrisponde una scarpata tettonica ben conservata. 75], p 337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Lago de la S. Mer, Terlago, Bondone</td>
<td>Linea M. Gratta-cul, M. Rostra, Terlago</td>
<td>75</td>
<td>*)</td>
<td>N-S</td>
<td>v</td>
<td>n</td>
<td>15</td>
<td>–</td>
<td>L'elemento Bondone W rientra tra le scarpate parzialmente ritoccate dall'erosione glaciale ma sufficientemente continue e ben conservate da poter essere riferite al IV intervallo (Pleistocene medio-superiore). 75], p 336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td>NNE-SSW</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>Pleistocene medio-Olocene 30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sul fronte di una cava abbandonata è possibile osservare un deposito morenico würmiano fogliato. 30], p 219, 223

Il sollevamento dei monti di Arco avrebbe fatto deviare, in epoca precedente alle ultime glaciazioni, verso E il F. Sarca attraverso le Arche. 85], p 372

Faglia caratterizzata da: forra rettilinea asimmetrica; discontinuità piana-isometrica della linea di cresta e del versante a scarpena, depressione chiusa e allungata, valloni rettilinei, trincea naturale. 30], p 223

*) Da 38] e 78] è indicata come faglia inversa. Dagli altri Autori come faglia normale. Tuttavia tutti indicano un sollevamento del lato W.

*) A seconda degli Autori è indicata come sovrascorrimento, faglia diretta, inversa o non definibile; le caratteristiche giacuturali sono quelle indicate da 30].
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Lago di Covello</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
<td></td>
<td>75]</td>
<td>NNE-SSW</td>
<td>L’elemento Paganella E corrisponde a una scarpata esposta a E che rientra tra le grandi forme tettunico-erosive che presentano una certa freschezza per cui si possono ritenere corrispondenti agli intervalli considerati (Plio-Pleistocene) 75], p 336</td>
<td>Pleistocene medio-Olocene 30]</td>
<td>) Riportata in modo diverso dagli Autori: sovraccorrimento, faglia inversa, diretta o di tipo non definitibile. La maggior parte di essi indica un sollevamento del lato W. ** Secondo 30]</td>
</tr>
<tr>
<td>Nr. Follag.</td>
<td>Foli.</td>
<td>Ubicazione Location Foli.</td>
<td>Nome della foglia Name of the fault</td>
<td>Bibliografia References</td>
<td>Tipo di foglia Type of fault</td>
<td>Giacitura Attitude</td>
<td>Dati qualificanti per la valutazione Trace features</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>136</td>
<td>20</td>
<td>Andalo, Molveno, S. Lorenzo in Banale</td>
<td>Linea di Molveno</td>
<td>75</td>
<td>NNE-SSW</td>
<td>v</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>45</td>
<td>85</td>
<td>38</td>
<td>78</td>
</tr>
<tr>
<td>137</td>
<td>20</td>
<td>Dosso Alto (versante E)</td>
<td>"Surface faulting" probabilmente diretta</td>
<td>NNE-SSW</td>
<td>v</td>
<td>10v</td>
<td>12,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>20</td>
<td>Soran</td>
<td>"Surface faulting" diretta con sollevamento lato E.</td>
<td>NNE-SSW</td>
<td>1.3v</td>
<td>60°</td>
<td>1</td>
</tr>
</tbody>
</table>

^{**} corrisponde alla massima lunghezza indicata.
<table>
<thead>
<tr>
<th>No. F.</th>
<th>Località</th>
<th>Ubicazione Location</th>
<th>Nome della faglia Name of the fault</th>
<th>Type of fault</th>
<th>Giacitura Attitude</th>
<th>Dati qualificanti per la valutazione Trace features</th>
<th>Intervallo di attività Period of activity</th>
<th>Classificazione Classification</th>
<th>Grado di attività Degree of activity</th>
<th>Note</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>Mezzocorona Pontalti</td>
<td>−</td>
<td>30]</td>
<td>Probabile trascorrente sinistra</td>
<td>NNW-SSE</td>
<td>5</td>
<td>Indizi di rigetto morfologico della scarpa a NW di Mezzocorona. 30], p 223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Mezzolombardo</td>
<td>−</td>
<td>38] 78] 30]</td>
<td>*)</td>
<td>N-S</td>
<td>10</td>
<td>Deformazioni della superficie topografica oloccena lungo il versante meridionale del M.Cornello. 30], p 223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L'evoluzione della scarpa tectonica Trento-Fai-Cles ha facilitato, in epoca non ben precisabile ma precedente alle ultime glaciazioni, la cattura dell'Adige da parte di un corso d'acqua che scorreva in una "paleo-Val Lagarina" e anche una deviazione del F.Noce verso Mezzolombardo. 85], p 372

*) Da 38] e 78] è indicata con tipo di movimento non definito, secondo 30] si tratta di una probabile trascorrente sinistra. Le caratteristiche geometriche indicate sono quelle di quest'ultimo Autore.

**) La lunghezza indicata in 38] e 78] è di 7 km.
<table>
<thead>
<tr>
<th>n° Faglia</th>
<th>Località</th>
<th>Ubicazione</th>
<th>Nome della faglia</th>
<th>Tipo di faglia</th>
<th>Giacitura</th>
<th>Dati qualificanti per la valutazione (trace features)</th>
<th>Intervallo di attività (Period of activity)</th>
<th>Classificazione Geosistemi (Geosystem classification)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>L. di Tovel</td>
<td>-</td>
<td>75</td>
<td>Non definito</td>
<td>NNW - SSE</td>
<td>Questo elemento rientra tra gli elementi giudicati a cui corrispondono scarpate tectoniche lungo le quali sono verificate grandi frane post-glaciali (frane della Val di Tovel). 75, p 336,341</td>
<td>Plio-Pleistocene 75]</td>
<td>rA</td>
<td>*) Lunghezza indicata da 78]; secondo gli altri Autori ha uno sviluppo di una decina di km.</td>
</tr>
<tr>
<td>143</td>
<td>M. Cornagiera</td>
<td>-</td>
<td>32</td>
<td>Sistema di faglie trasversale destre</td>
<td>E-W</td>
<td>La struttura del M. Cornagiera (linee di cresta traslate, depressioni, vallecole) presenta caratteri fisiografici e geologici tali per cui si ritiene che alla sua formazione abbiano concorso più cause. Allo stato attuale sembrerebbe che le cause determinanti il fenomeno siano da ricercarsi in movimenti tectonici recenti (riattivazione passiva di linee mesozoiche o attività di faglie trasversali) e che la gravità abbia avuto un ruolo secondario o successivo. 32, p 248,249</td>
<td>Recent*</td>
<td>rA</td>
<td>*) Non meglio specificato.</td>
</tr>
<tr>
<td>n° Faglia</td>
<td>n° Fault</td>
<td>Ubicazione</td>
<td>Location</td>
<td>Nome della faglia</td>
<td>Name of the fault</td>
<td>Tipo di faglia</td>
<td>Type of fault</td>
<td>Giacitura Attitude</td>
<td>Trace features</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>

*) Indicata come faglia (con movimento controverso) o asse di deformazione. **) Non indicato il rilevato delle faglie rilevate con la prospezione sismica.
BIBLIOGRAFIA

23 Castaldini D., Cavallin A., Lazzarotto A., Panizza

48 Federici P. R. (a cura di) (1988) - Giornate di studio

73 Sauro U. (1979a) - Dati preliminari sulla Neotettonica del foglio 48 (Peschiera). In: CNR (1979) - Nuovi contributi alla Carta

Manoscritto ricevuto il 5.4.1991
Inviato all'Autore per la revisione il 6.9.1991
Testo definitivo ricevuto il 21.10.1991