THE LATEST CONTINENTAL FILLING OF VALLE UMBRA (TIBER BASIN, CENTRAL ITALY) DATED TO ONE MILLION YEARS AGO BY MAGNETOSTRATIGRAPHY

1Roberto Bizzarri, 2Andrea Albianelli, 3Patrizia Argenti, 1Angela Baldanza, 4Roberto Colacicchi & 5Giovanni Napoleone
Dipartimento Scienze della Terra, Università di Perugia, Perugia
3Lab. Paleontologia dei Vertebrati, Dip. Scienze Geologiche, Università di Roma Tre, Roma
Corresponding author: R. Bizzarri <roberto.bizzarri@libero.it>

ABSTRACT: Bizzarri R., Albianelli A., Argenti P., Baldanza A., Colacicchi R. & Napoleone G., The latest continental filling of Valle Umbra (Tiber Basin, central Italy) dated to one million years ago by magnetostatigraphy. Paleogeography of central Italy during Pliocene and Pleistocene is characterized by the on-setting of continental basins, oriented almost parallel to the uplifting Apennine mountain chain and marked by the valleys of main rivers Arno, Chiana, Tevere, together with minor intermountain basins (e.g.: Colfiorito). The internal range, with its complex of intermountain basins, was bounded by coastal marine deposits of the Tyrrhenian and Adriatic seas. Due to a decidedly established palaeoenvironmental and magnetostatigraphic scenery for Valdarno, Valliberina and Colfiorito Basins, the short section at Arquata in the Valle Umbra Basin, here presented, may be constrained more closely to the evolutionary pattern of the former ones by means of a similar magnetostatigraphic characterization. In particular, detailed magnetostatigraphy led to date the earliest deposits in the Valdarno Basin at 3.3 Ma, whereas in Valliberina the oldest analyzed deposits, which don’t reach the substratum yet, postdate 2.8 Ma. Upward, the two above mentioned main sedimentary profiles reach 2.0 Ma and 2.1 Ma, respectively, and in the shorter section of Colfiorito only the youngest dates are attained, until 0.78 Ma. The same younger date was detected in the Valdarno, where also the Olduvai chron (1.95-1.77 Ma) is recorded, followed by the Jaramillo chron (1.05-0.97 Ma) after a long sedimentary hiatus. The Valle Umbra profile exposed near Bevagna is dated across the Jaramillo chron, the duration of its deposition extending approximately 300 ky. Both results are very close to the previously mentioned final fillings of Valdarno and Colfiorito.

RIASSUNTO: Bizzarri R., Albianelli A., Argenti P., Baldanza A., Colacicchi R. & Napoleone G., Il riempimento continentale più recente della Valle Umbra (Bacino Tiberino, Italia centrale) datato a un milione di anni fa attraverso la magnetostatigrafia. La Valle Umbra, nel settore orientale del Bacino Tiberino in Umbria, ha sinora offerto pochi dati per integrare la transizione paleogeografica, da ovest verso est, che ha interessato sia gli adiacenti bacini continentali più ampi (Valdarno, Val di Chiana, Valle Tiberina), sia i bacini intermontani minori e più orientali (Colfiorito), tutti con asse orientato circa NW-SE, parallelo alla nascente catena appenninica. Nel loro insieme, questi bacini intermontani, appartenenti alla zona centrale della catena appenninica, sono confinati entro le maree del mare di dieci milioni di anni fa. La successione sedimentaria della porzione sommitale, messa a giorno nella Cava Arquata a Bevagna, permette di integrare il quadro conoscitivo dell’evoluzione paleoambientale più recente dell’Italia centrale, poiché conclude quelle fasi del sollevamento appenninico iniziate alla data di 3.3 Ma nel Valdarno e quelle presumibilmente coeve della Valliberina, interrotte rispettivamente a 2.0 Ma e 2.1 Ma. Il nuovo ciclo deposizionale è cominciato subito dopo, datato solo nel Valdarno, da 1.9 Ma a 1.7 Ma, mentre il ciclo finale, nel Valdarno e a Colfiorito, contiene il magnetocrono Jaramillo (1.05-0.97 Ma). Nella successione di Colfiorito, inoltre, viene raggiunta la data più recente, testimoniata dalla registrazione dell’inizio dell’ultimo magnetocrono, a 0.78 Ma. I depositi studiati in Valle Umbra sono marcati molto nettamente dalla presenza del crono Jaramillo e la deposizione della successione analizzata a Bevagna, nei pressi di Foligno, ha avuto una durata stimata di 300 ky. La parte finale del Pleistocene inferiore e il passaggio Pleistocene-miozooceo inferiore - Pleistocene medio sono calibrati alla data di Jaramillo e all’inizio dell’ultimo magnetocrono (Brunhes), rispettivamente. Entrambi i segnali sono registrati nella sezione di Colfiorito. Si può ritenere che la deposizione conclusiva fluvio-lacustre della Valle Umbra sia ragionevolmente coeva con quella dell’Altopiano di Colfiorito.

Key Words: Valle Umbra, Magnetostatigraphic dating, Jaramillo chron, Apennine basins, Early Pleistocene, Central Italy.

Parole-chiave: Valle Umbra, Datazione magnetostatigrafica, Crono Jaramillo, Bacini Appenninici, Pleistocene Inferiore, Italia Centrale.

1. INTRODUCTION

The Northern Apennine intermountain basins represent bench-marks of structural and stratigraphic significance for updating most of the present environmental studies on continental deposition occurring through the recent geological past. Basin infills were firstly assigned Pliocene and Pleistocene ages according to the lithological subdivision of blue and dark-green clay underlying yellowish sand, with both the lithologies closely equivalent to marine analogous deposits ascribed to the end of Pliocene and the beginning of Quaternary (e.g., see NAPOLONI et al., 2003; VAN COUVERING, 1997). Such ages, though, have recently been calibrated to dates by means of magnetostatigraphy, which right in Umbria provided the conceptual and more complete...
tool for defining the numerical timing for marine sedimentary successions. The present example is aimed at testing a different approach to a short interval of continental deposits, devoid either of direct lithostratigraphic correlation with adjacent sections or of a significant fossiliferous record. Actually, biochronologic ages used for classifying mammal fauna stages in the richest non-marine deposits of Italy (AZZAROLI, 1977; AZZAROLI et al., 1988) were made equivalent to the biostratigraphic ages once they were both calibrated to the same global scale of geomagnetic polarity reversals, currently used for geochronology (ALVAREZ, 2009). The process was first verified in the nearby Upper Valdarno, where local lacustrine to deltaic successions had magnetostratigraphically been dated in million years (Ma) and several classical Villafrianchian Faunal Units, from there established for biochronology, were labelled with an absolute reference (NAPOLEONE et al., 2003). The Upper Valdarno profile contained also the thickest continuous profile and earliest mammal fossil record, so to become the calibration frame for other Apennine continental successions, beginning with Valtiberina and Cöfforto Basins in Umbria. These intermountain basins, therefore, have assumed the dates in million years of the geomagnetic polarity time scale. In particular, the Valdarno sequence was calibrated since 3.3 Ma to 1.7 Ma, and with a resolution of few thousand years (ky) (ALBANELLI et al., 1997) and even 1 ky (NAPOLEONE & AZZAROLI, 2002).

With recently collected data (ALBANELLI et al., 2002; NAPOLEONE et al., 2003), and following the calibration of the Chronostratigraphic Time Scale to the Geomagnetic Polarity Time Scale (GPTS), for the “Plio-Pleistocene Boundary and the Beginning of the Quaternary” it is possible to relate the ages of continental deposits to those of marine sequences, both calibrated to the Gauss and Matuyama chronos including Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been carried out on the profile exposed in the Arquata quarry, in the Olduvai. To the Olduvai chron the Pliocene/Pleistocene boundary was fixed at 1.796 Ma in the Vrica stratotype (VAN COUVERING, 1997), albeit, recently, the Pliocene/Pleistocene boundary has been repositioned at 2.58 Ma (GIBBARD et al., 2010). The magnetostratigraphic analysis of the Valle Umbra continental sediments has therefore been done for identifying particular intervals (magnetozones) co-relatable to the chron of the geomagnetic time scale, by which the biochronologic “stages” could be calibrated. The magnetostratigraphic survey has been...
Tectonics played an important role in modeling the present morphology of Valle Umbra since Middle-Late Pleistocene, even until last interglacial stage (GREGORI & CATTUTO, 1986). Two major fault systems were acting: one, in the eastern side uplifting the Serano-Brunette ridge along the border fault, while its piedmont accumulated in fan deposits; the other one, the antithetic east-dipping fault system was uplifting the conglomerates of the second sedimentary phase (presumably), originally laying at the plain level, up to the present Montefalco hill, nearly 180 meters above the valley. Immediately before this phase of uplift, small ponds were isolated, with local carbonate-siliceous deposition (COLACICCHI et al., 2007).

3. THE ARQUATA QUARRY STRATIGRAPHIC SECTION

The whole available succession of the Valle Umbra sediments, representative of latest evolution of the basin, is here exposed across a nearly 65 m thick stratigraphic profile (Figs. 2, 3). The examined deposits are mainly formed by clays and sands containing lignite levels, which dip to the SW by 10°-12°. A well visible extensional fault in the mid-profile, almost E-W striking and dipping southward, suggests a minor displacement of few metres (Fig. 3). Some minor surfaces may be locally recognized, either produced by tectonics or sin-depositional collapses, each less than 1 m in displacement.

3.1 Sedimentological features

The succession may be referred to a depositional lacustrine and fluvial-lacustrine frame, and two depositional environments are documented: a shallow-water lake and an alluvial plain with distal fluvial supplies (Fig. 3). The facies associations are divided accordingly (COLACICCHI & BIZZARRI, 2005; COLACICCHI et al., 2007), as:

Facies Association A (shallow lake environment) - The association groups facies referable to a shallow water lacustrine environment. Facies A1 is mainly represented by massive to thin-laminated, fossils bearing clay beds (Fig. 4.1). Thin fine sand lenses showing wave and current ripples locally occur. Fossils are both scattered or grouped in thin (up to 5 cm thick) layers, and banks of vegetal matter also occur as thin lignite levels, but more commonly enhancing the lamination. Facies A2 is represented by alternations of thin laminated clay and ripple laminated silt/fine sand, with the latter prevailing (Figs. 4.2, 4.3). Both facies A1 and A2 are referable to a shallow lake environment with stable and presumably faint wave motion.

Facies A3 is characterized by wave ripple laminated sand (Fig. 4.4), locally with hardened top and bottoms and polygonal drying cracks (Figs. 4.5, 4.6), documenting subaerial exposure such as of lake beach. Wave ripple laminated sands locally contain clay chips, vegetal matter and root remains. Facies A4 is represented by dune- to ripple-laminated sand resulting from minor turbidites (Fig. 4.7), due to distal fluvial flooding and/or sediments remobilization possibly after seismic shocks or strong wind action. Some of these sandy bodies evolve to a clearer beach deposits, also showing drying polygons and root remains, as a proof of sedimentation in a not deep environment.

Facies Association B (alluvial plain environment) - Facies B1 is prevalently composed of laminated silty clay, deposited in an alluvial-plain environment, whereas facies B2 is described as root-bearing massive to laminated clay and is interpreted as poorly drained paleo-

Fig. 1 - 1) Sketch of northern Apennine extensional basins and geographic collocation of the study area (modified after NAPOLEONE et al., 2003). 2) Schematic geological setting of Valle Umbra.

soils (Fig. 4.10). Facies B3 shows decimeter-to-meter thick levels of massive to slightly laminated silty sand (Figs. 4.8, 4.9), locally associated with facies B4, the latter described as current ripple and/or cross laminated sand (Figs. 4.11, 4.12). The both latter two facies are interpreted as produced by distal fluvial influxes (river flooding).

Facies Association C (palustrine or marsh-pond environment) - Facies C1 (Fig. 4.13) is formed by less than 1 meter-thick lignite levels, usually bearing larger gastropods and *Unio* sp. Grey clayey palustrine paleosoils with rooted radical apparatuses, scattered vegetal material, fossils, remains of the original lamination and reddish surfaces are associated in facies C2, which can be indicated as root-bearing massive clay (Fig. 4.13). The lignite levels and the massive clayey palaeosoils (facies C1 and C2 respectively) are anyhow constantly associated, leading to a poorly oxygenated and strongly reducing environment, able to maintain organic matter almost un-altered. Both associations represent swampy lake flanks as well as small ponds and marsh within the alluvial plain.

Facies architecture - The lower two thirds of the succession (Unit 1: Fig. 3) are dominated by Associations A of more frankly lacustrine environment, while alluvial plain deposits (Associations B) prevail in the final portion (Unit 2: Fig. 3). The variable thicknesses of lignite and clays of palustre deposition (Associations C) may be present in both environments, often transitional from A to B (Fig. 3). Rhythmcity is a recurring characteristics in the A associations, both within a single association and vertically shifting from to one another. Long-lasting and stable lacustrine conditions, still with minor variations due to seasonality, supply variations, etc., characterize the lower section, with the predominance of A1 and A2 facies (Fig. 3) whereas the shift from lacustrine to alluvial plain conditions may be most probably linked to longer period of climatic fluctuation.

Post-depositional structures, such as convolute laminations (Fig. 4.14) and micro-faulting (Fig. 4.15) commonly occur throughout the entire section and are documented in all the described facies. Particularly, structures due to subaqueous remobilization of partially lithified deposits (Fig. 4.16) suggest a probable seismic origin which testifies of tectonic pulses coeval to sedimentation.

3.2 Paleontological record

Macropalaeontological content is represented by rare vertebrate remains (fragments of carapace and long bones of turtle *Emys orbicularis* and only one scapula fragment of amphibian) and abundant non-marine molluscs, associated to palaeocarpological remains. The malacological assemblage (COLACICCHI et al., 2005; CAPRAI, 2010) collected in the lower portion (Unit 1) is characterized by *Melanopsis (Melanopsis) affinis*, *Theodoxus (Neritina) groyanus*, *Viviparus (Viviparus) bellucci*, *Prososthenia cf. P. oblonga*, *Neumayria priscilae*, *Emmericia umbra*, *Melanoides (Melanoides) curvicoata*, *Unio pillai*, *Dreissena polymorpha*, *Pisidium sp.*, *Hauffenia minuta*, *Valvata interposita*, *V. piscinalis* (Fig. 5). The assemblages are almost comparable with the ones reported by PETRONIO et al. (2000-2002). Occurrence of terrestrial gastropods, as *Carychium (Saraephia) tridentatum* and *Vertigo (Vertilla) angustior*, although previously reported (SIMONETTI, 1996) have not been here documented. Assemblages contain only few species which occur from Middle Villafranchian (M. aff...
Fig. 4 - Sedimentary facies in the Arquata quarry deposits. 1) Massive and thin laminated clay (facies A1). 2, 3) Alternations of thin laminated clay and wave ripple-laminated sand/silt (facies A2). 4) Wave ripple-laminated sand (facies A3). 5) Particular of hardened top of wave ripples in the facies A3. 6) Polygonal drying cracks in facies A3. 7) Dune- to ripple-laminated sand resulting from minor turbidites (facies A4). 8, 9) Massive to slightly laminated silty sand (facies B1); picture 8 also shows channelled base surface. 10) Laminated silty clay (facies B2) associated to root-bearing massive to laminated clay (facies B3). 11) Top hardened surface of current ripple (facies B4).


nis. T. groyanus, E. umbra and, dubitatively, U. pillai or Olivola F.U. (P. oblonga) to Farneta F.U.; N. priscillae is reported only in the Tasso F.U., whereas V. bellucci, M. curvicosta and V. interposita are still currently documented in the Tasso and Farneta Faunal Units (GLIOZZI et al., 1997). Furthermore, the genera Prosoesthonia and Neumayria are considered extinct at the end of Early Pleistocene, as well as E. umbra and M. affinis, which do not survive beyond Early Pleistocene (AMPROSETTI et al., 1995a, 1995b; GLIOZZI et al., 1997; PETRONIO et al., 2000-2002; GIROTTI et al., 2003).

Mollusc assemblages coming from the upper section (Unit 2) only contain D. polymorpha, lacking stratigraphic relevance.

The palaeoecological analyses evidence two different types of assemblages referable to particular edaphic conditions: 1) hygrophyllous plants Scirpus isolepis, Ranunculus pseudoflammula, cf. feta europaea, living and accumulated in situ, and 2) mesophyllous plants Potamogeton sp., Rubus sp., Melissa elegans, Ficopsis potentiloides, Mallotus mai, Thalclirnum minimum of warm-temperate climate, living in the surrounding area and carried by rivers into the basin (Fig. 5). These specimens are accompanied by common Characeae oogonia and other remains. Among the latter, a much altered bract and a Selaginella gr. plicencica macrospore (Fig. 5.19), a present-day species of humid and shady environment, tropical to sub-tropical (CAVALLO & MARTINETTO, 2001), are included. Microfossils are only represented by freshwater ostracods Cyprideis torosa and Ilyocypris braidy (Figs. 5.11, 5.12), known in Central Italy Basins from Early Pleistocene (Tasso F.U.) onward (AMPROSETTI et al., 1997; GLIOZZI et al., 1997). Such an interpretation is congruent, indeed, with noticeable repetitions of sedimentary structures as well as of facies. Sampling for magnetic measurements has been carried out at an average spacing of one meter (Fig. 3), preferably in the less sandy levels in order to avoid sediment formed under active motion where particle orientation would have been dispersed under a uniform inducing field. The choice helped to better enhance the paleomagnetic vector in sharpening its resolution power for definition of magnetozone boundaries, even in material very weakly magnetized. Each sample was extracted from levels excavated across the few meter thick steps used in quarrying operations across the above mentioned profile, and their resulting location was thence accurately fixed in stratigraphic order and of fresh rock material. As remanent magnetizations were presumably weak and no metal protections around, in a nearly 0° declination field, samples were oriented by magnetic compass using manual simple operations. The average spacing of collected levels was chosen at one meter distance, as that used in the other intermontain basins previously investigated so far, considering a presumably recorded time span of some hundreds of ky, and having in accordance the accumulation rate of 30-40 m/100 ky been assumed. A second aim, indeed, led collecting unoriented samples at 15-20 cm distances to be measured for their magnetic content under the present field, the magnetic susceptibility, which depends on the amount of magnetic particles under magnetic induction from the present Earth’s field.

4. THE MAGNETOSTRATIGRAPHIC PROFILE

4.1 Paleomagnetic sampling

The succession of sediments across the lithostratigraphic profile appears quite regular, as remarked above, with noticeable repetitions of sedimentary structures as well as of facies. Sampling for magnetic measurements has been carried out at an average spacing of one meter (Fig. 3), preferably in the less sandy levels in order to avoid sediment formed under active motion where particle orientation would have been dispersed under a uniform inducing field. The choice helped to better enhance the paleomagnetic vector in sharpening its resolution power for definition of magnetozone boundaries, even in material very weakly magnetized. Each sample was extracted from levels excavated across the few meter thick steps used in quarrying operations across the above mentioned profile, and their resulting location was thence accurately fixed in stratigraphic order and of fresh rock material. As remanent magnetizations were presumably weak and no metal protections around, in a nearly 0° declination field, samples were oriented by magnetic compass using manual simple operations. The average spacing of collected levels was chosen at one meter distance, as that used in the other intermontain basins previously investigated so far, considering a presumably recorded time span of some hundreds of ky, and having in accordance the accumulation rate of 30-40 m/100 ky been assumed. A second aim, indeed, led collecting unoriented samples at 15-20 cm distances to be measured for their magnetic content under the present field, the magnetic susceptibility, which depends on the amount of magnetic particles under magnetic induction from the present Earth’s field.
4.2 Laboratory measurements

Paleomagnetic measurements were carried out on cubic or prismatic specimens of nearly one-inch side cut from the oriented hand samples. All samples yielded more than two specimens, so that remanence of each level was measured using demagnetization procedures of both types (AF), thermal and by alternative fields (AF). The latter using the new built-in degausser of the ETH Magnetic Laboratory at Zurich where all the lacustrine sediments from central Italy studied in last two decades had been measured. The laboratory procedures were the same as summarized for the Upper Valdarno Basin, which represents the magnetostratigraphic reference for rock types of the analogous continental basins bordering the Apennine mountain range (NAPOLEONE et al., 2003). Stepwise thermal demagnetization was carried out on samples, of each level bed, at closely spaced temperature intervals, in order to detect even minor changes occurring in those weakly magnetized sediments that would have affected the original direction of the primary vector (Fig. 6). A complete study on rock magnetism is beyond the aims of the paper; nevertheless, some consideration can be pointed out. No particular changes were noticed for the presence of sulphide minerals, which on the contrary could affect some significant intervals in the lignite-bearing levels of the Valdarno with unstable magnetizations. In the final deposits of Valde Umbra, the paleoenvironmental conditions produced minor oxidation on their magnetic mineralogy. Such a behaviour was mainly enhanced by the smooth trend of the AF curves (Fig. 6), which otherwise assessed in several other occasions for the Apennine continental deposits completely inconsistent directions at any successive demagnetization step. This was particularly evident in the Valdarno Basin beds closer to the thick lignite-bearing level, due to the anoxic conditions there acting during deposition and presence of sulphides still pervading the overlying sediment for more than 50 m in thickness. Therefore, the straightforward direction shown by both demagnetization treatments of the paleomagnetic vector to the characteristic primary magnetization is interpreted as the typical behaviour due to the presence of a single component in the magnetic signature; in fact, the characteristic remanent magnetization (ChRM) was well isolated already at temperatures above 100-200 °C or at applied fields above 0.2-0.3 mT (Fig. 6). On our skill, and according to former results on analogous deposits (ALBIANELLI et al., 2003; NAPOLEONE et al., 2003), analyses are reasonably consistent with the original paleomagnetic field and enhance magnetozones with different polarity.

4.3 Results

The total of 55 analyzed levels yielded three intervals of polarity directions, two reversed (R1 and R2) bracketing a normally magnetized zone (N1), within which the polarity change occurs in an evident continuity of the lithostratigraphic profile (Fig. 3). The three magnetozones have to be correlated to the chron of the GPTS in order to become calibrated to their dates in million years. That is, they will represent the absolute dating at each limit of a polarity change and a steady time flow throughout the profile, having the GPTS been the time expression, in continuous sequence, of the ocean floor magnetic anomaly stripes recorded for a steadily expanding oceanic
crust. At Arquata is applied the same criterion as in Valtiberina, where for the Gauss and Reunion chron, through Matuyama, the time resolution was obtained for the total time span 2.8-to-2.0 Ma (PONTINI et al., 2002). Here, it has to be taken into account that the Olduvai chron lies in the Valdarno closely above Reunion (200 ky) and in a split mode as in the marine series in Marche (central Italy) and in Calabria (southern Italy) (NAKAGAWA et al., 1997; ALBIANELLI et al., 2003). After it and until Present, only two normal polarity intervals are contained in the GPTS, and of them the only normal chron followed by one of reversed polarity is Jaramillo. The dates bounding it last 1.05 to 0.97 Ma, and it has therefore to be correlated to the N1 magnetozone, whereas for both magnetozones of reversed polarity, R1 and R2, time values ascending and descending outward maintain open limits (Fig. 3). Thickness and characters of the N1 magnetozone, together with sedimentological consideration about sedimentation rate pertinent to depositional context recognized, agree to its attribution to the Jaramillo chron (BIZZARRI et al., 2009; COLACICCHI et al., 2009).

5. DISCUSSION

5.1 Magnetochronology in Northern Apennine basins

The role of magnetic stratigraphy is meant at providing a numerical date (or absolute dating) throughout a continuous succession of sediments whenever its magnetic signature enables to identify intervals of defined magnetic polarity (magnetozones) that can be related to magnetochrons of the Geomagnetic Polarity Time Scale (GPTS). It seems therefore a quite viable digression here to re-appraise the meaning of the results achieved in the magnetostratigraphic surveys carried out over sedimentary sequences in the intra-mountain basins close to Valle Umbra and dated in great detail (AMEROSETTI et al., 1995a, 1995b; FICCARELLI et al., 1997; ALBIANELLI et al., 1997, 2002, 2003; COLTORTI et al., 1998; NAPOLEONE & AZZAROLI, 2002; NAPOLEONE et al., 2003). Basins surrounding Valle Umbra provide therefore the primary source to infering an age for the pile of a presumably much thicker succession, according to the thicknesses visible or estimated in several such basins (Fig. 7). But, unfortunately, the geologic and sedimentary history of Valle Umbra represents the less known portion of the continental deposition in the Tiber Basin. Its south-western branch, in fact, is best known, as the oldest sediments, although not the lowest ones, released a date of 2.8 Ma (ALBIANELLI et al., 2002), whereas the north-eastern sector yields most deposits belonging to the final filling. The basal deposition may be inferred, thence, to have begun largely after Miocene, considering that in the Valdarno Basin the exposed contact of the lacustrine facies on the pre-Pliocene substratum was dated 3.3 Ma by magnetostratigraphy, as early as in the Mammoth chron (ALBIANELLI et al., 1997). The latest filling of Valdarno, indeed, contains the last magnetochrons centered at nearly 1 Ma, but a sedimentation gap lasting at least 0.7 million years (my) has been detected just before it. The mentioned lack of exposures in Valle Umbra does not enable to further hypothesize about earlier ages of its deposits. The closest comparison of its final filling may be done with the equivalent one in the nearby Cofferito Basin (Fig. 7), where the outcrops of the uppermost deposits, exposed in the small towns of Cofferito and Cesi, reveal dates respectively ranging from the well confined Jaramillo chron (1.05-0.97 Ma) to the initial Brunhes chron (across the limit of 0.78 Ma) (FICCARELLI et al., 1997; COLTORTI et al., 1998). It is worth recalling that the final Early Pleistocene and the beginning of Middle Pleistocene are respectively calibrated to these chronos.

In the Arquata profile, the less than 80 m exposure reduced by a slight dipping to about 65 stratigraphic meters represents a thin cover, whereas the oldest deposits visible in the Morgnano lignite mine (Spoleto in Valle Umbra) seem to equate the Valdarno lignite-bearing levels mined at Santa Barbara and dated 3.1 Ma (Fig. 7). Being the Arquata quarry profile the final filling phase, the affinity with the adjacent basins leads to infer that a long-lasting slice of time is unquestioned and it might relate to the whole Late Gauss-to-Reunion interval (3.05-2.15 Ma), part of which was calibrated at Toppetti quarry in Valtiberina, and in the Valdarno through the Matuyama chron including Olduvai (1.95-1.77 Ma). As Valdarno and Cofferito basin covers reach a Jaramillo and Brunhes dating, such values seem perfectly fitting the magnetostratigraphy results in Valle Umbra.

5.2 Geochronological and stratigraphic implications

The magnetochronologic result, of the Jaramillo date (Figs. 3, 7), represents a basic point supporting all stratigraphical considerations to be referred to. Firstly, once this 55 m sampled upper profile would be considered as deposited with constant sedimentation rate, the direct correlation between thickness and number of years of accumulation leads to assign 80 ky duration to the 14 m thick intermediate normal polarity level (Fig. 3). From this assumption it descends a duration of roughly 60 ky for the upper 11 m of reversed polarity and nearly 170 ky for the lower one 32 m thick, which includes the nearly 7 m unsampled section (Fig. 3). The overall duration would be nearly 300 ky, which leads to an accumulation rate close to 20 m/100 ky, excluding compaction rate, fairly low when compared to similar lithologies analyzed in Valtiberina and Valdarno basins. In these latter, in fact, the massive clay and/or of deeper lake deposition yielded a value of 24 m/100 ky, progressively reaching in the overlying levels, richer in silty sand, more that of 35 m/100 ky. More generally, the sedimentation rates calculated for the two basins (NAPOLEONE et al., 2004) range from a minimum of 20 m/100 ky to a maximum of 35 m/100 ky, with averages of about 22 m/100 ky (Valtiberina) and 30 m/100 ky (Valdarno). Although the unknown variable of compaction rate, these values represent an agreeable datum point for the study section. In the lower levels of the Arquata quarry, sediments range from silty clay to silt and sand in the lacustrine facies, and are not as finely clayey as in Fosso Bianco Unit. On the other hand the alluvial plain sediments are lithologically analogous to the uppermost Valdarno deposits. With such a rate, the overall thickness of the Arquata profile would have been sensibly thicker, from 77 to 105 m, in contrast to the measured 65 m, which means that the inferred missing meters need an explanation. Some hypotheses can be provided.

1) It may be a consequence of compaction rates, which may reasonably differ from a basin to another, due
The latest continental filling of Valle Umbra (Tiber Basin, central Italy) …

Fig. 7 - Magnetostratigraphic dating of Arquata quarry section and the Valle Umbra sedimentary sequences positioned within the Apennine Basins' evolution (redrawn and modified after NAPOLEONE et al., 2003). Calibration of local mammal faunas (lmf) and of main Faunal Units (F.U.) to GPTS is also shown.

Datazione magnetostratigrafica della sezione di Cava Arquata, ed inserimento delle sequenze sedimentarie della Valle Umbra nel quadro evolutivo dei Bacini Appenninici (da NAPOLEONE et al., 2003, ridisegnato e modificato). È riportata anche la calibrazione delle faune locali a mammiferi (lmf) e delle principali Unità Faunistiche (F.U.) con la scala GPTS.
to local variations concerning petrology, grain size and organic matter amount (Einsele, 1992; Van Assele et al., 2005, with refs.).

2) Contrary to Valdarno Basin, which on-sets on a more erodible sandstone substratum (Mancigno s.l. Auct.), Tiber Basin, particularly Valle Umbra, largely set up on a limestone substratum, and sandstones (Marnoso-Arenacea s.l. Auct.) only locally crop out. Thus, a primary difference in sediments supply must be considered too.

3) In the case of Arquata, the above reported geostructural observations stressed the occurrence of the well visible fault cutting the profile, of minor interruptions due to the inclination (10°-12° SW) of the strata respect the steps of the quarry, as well as of fractures with a not significant dislocation in the upper profile. The latter have been sampled in detail on both sides for a better control. The sampled 55 m can be thence less than those actually deposited: although the disturbances seem at a direct view of minor size, two effects implicitly add to one another. On the one hand, the interval of normal polarity should be slightly thicker, leading to a larger accumulation rate and therefore closer to those measured in Valdarno and Valtiberina; on the other hand, duration in the adjacent intervals of reversed polarity is shortened and a certain amount of its thickness removed by this main fault, to become reduced significantly. It therefore appears quite likely an accumulation rate of 25-30 m/100 ky, which can become even higher in the final steps of filling -more alluvial and palustrine- as documented in the Valdarno basin (Napoleone et al., 2004). In the latter occasion, the control was made by the cyclostratigraphic distribution of the magnetic signature through a 0.5 my long sequence, enhancing at least five steps of increasing sedimentation rates. The consequence would be, for the present profile, a reduction of the erased pile of sediments to less than 25 m, which is significantly shorter than earlier implied but still much more than it appears to a direct view.

4) If we consider the lack of about 5 to 15 m of the succession as exclusively due to the fault occurring between lower and upper sections, an average sedimentation rate of about 25-30 m/100 ky is still appropriate. To support the hypothesis, one more consideration may help, changing accumulation rates in the range from 24 m to 30 m/100 ky, with extremes reaching as much as 19 m to 35 m/100 ky: the datum is consistent with paleoenvironmental extremes reaching as much as 19 m to 35 m/100 ky for the maximum influx of sand filling the deposit. When the signal processed in cycle length/meter is tuned to precisely timed tie points, the cycle length in years is expressed in intervals strikingly corresponding to the Milankovitch cyclicity. The shorter one among precession, obliquity and short eccentricity, prevails in the lower pile of sediments; at the date of 2.86-2.84 Ma a rather sudden increase of amplitude affects the obliquity cycle, while a marked eccentricity is noticeable in the short profile of Olduvai time beginning just before the Gelasian-Crotonian boundary. When climate gets prevailing driven by the short eccentricity cycle at dates close to Jaramillo, the shortness of time series in
the Arquata profile would barely allow to detect such a cycle, unless it was strongly recorded as it occurred in the Olduvai profile for the Valdarno.

6. CONCLUSIONS

Two major conclusions may be stressed from the present study, both mainly descending from magnetostratigraphic dating. First, the fluvial-lacustrine deposition in Valle Umbra was over by nearly one million years ago. The inferred presence of sediments equivalent to the Montefalco conglomerates (Fig. 7), tectonically displaced in the nearby exposures, would imply a short duration for their deposition, which makes still rather long the missing time span until Present, i.e. up to the historical and protohistorical times. Secondly, the time length recorded at Arquata would not exceed 300 ky, which leads to roughly imply that only 10-15% of the possibly 3-to-1 Ma of the Tiber Valley infilling is here exposed. From the purely geochronologic point of view one may recall another conclusion, i.e., all recorded proxies benefit a date to which their alleged ages are calibrated; having the direct chronologic reference, adjustments may be done for correlation with other exposed sequences. Such is the case of the present biochronologic record, whose assessment in the calibrated frame of the Apen- nine basins may be accomplished: the Tasso F.U. estab- lished in the Valdarno is calibrated to a date lasting 1.6-to-1.7 Ma, right after the end of Olduvai chron. The malacofoana recovered at Arquata, therefore, is dated quite younger than the vertebrate Tasso F.U., and con- firms that biochronology by itself is a fairly weak tool for timing short intervals. A multidisciplinary approach, also involving magnetostratigraphy, if possible is therefore already preferable.

Another important result is that the Arquata sec- tion revealed, in the present study, a number of similarities in its evolutionary trend with other basins of central Italy, as well as a clearer assessment of the geological events through the Tiber Valley. Its magnetostratigraphic dating provides a second constrain for Valle Umbra evolution (Fig. 7), after the attribution of Morgnano lig- nite to Traversa F.U., dated as old as late Gauss Ma of the Tiber Valley infilling is here exposed. From the purely geochronologic point of view one may recall another conclusion, i.e., all recorded proxies benefit a date to which their alleged ages are calibrated; having the direct chronologic reference, adjustments may be done for correlation with other exposed sequences. Such is the case of the present biochronologic record, whose assessment in the calibrated frame of the Apen- nine basins may be accomplished: the Tasso F.U. estab- lished in the Valdarno is calibrated to a date lasting 1.6-to-1.7 Ma, right after the end of Olduvai chron. The malacofoana recovered at Arquata, therefore, is dated quite younger than the vertebrate Tasso F.U., and con- firms that biochronology by itself is a fairly weak tool for timing short intervals. A multidisciplinary approach, also involving magnetostratigraphy, if possible is therefore already preferable.

ACKNOWLEDGEMENTS

Authors wish to thanks the property and the work- ers of the Arquata quarry, and especially the responsible of the quarry, Sig. Pietro Antano, for their courtesy and the help in the sampling. This work has also been possile thanks to the project: "Invito al Parco - Lungo i percorsi delle sue acque e della sua storia", conceived and promoted by Prof. M.R. Trabalza.

REFERENCES


Ms. ricevuta il 12/06/2010
Testo definitivo ricevuto il 5/09/2010

Ms. received: May 12, 2010
Final text received: September 5, 2010