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ABSTRACT: Many features and phenomena, such as slope morphology, climate, hydrogeological and hydrological conditions, 
and material strength, contribute to slope instability. One of the most important preconditioning factors, particularly in rock slopes, 
is structural control. Structural control includes any tectonic processes or features that may influence landslide initiation, move-
ment, or termination, including in situ stress conditions, discontinuities, faults, folds, and foliation. Structures affect not only the 
failure geometry, such as headscarp shape, but also deposit volume, morphology, block size, damage, and emplacement behav-
iour. Structural features and processes thus influence all aspects of landslide behaviour, from the development of unstable condi-
tions to deposition. Interestingly, mass movement studies can also highlight structures, and contribute to detailed mapping of pre-
viously unrecognised faults, folds, and other features. Methods such as regional lineament mapping, traditional fieldwork, photog-
raphy and photogrammetry, LiDAR surveys, InSAR interpretation, and numerical modelling are used to analyse structural features 
and processes related to slope instability. This short paper presents an overview of these methods and highlight their applications 
in a case study. 
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1. INTRODUCTION 
 

Structural geological features and processes, such 
as discontinuities, folds, faults, foliation, and in situ 
stresses, are recognised as important controls on slope 
instability, particularly in rock slopes (Agliardi et al., 
2001; Stead and Wolter, 2015) (Fig. 1). In this context, 
discontinuities include pre-existing lineaments that may 
influence failure geometry and behaviour, whereas 
faults are lineaments that typically produce damage or 
shear zones of weaker material surrounded by more 
competent material (Loew et al., 2012; Milmo et al., 
2014; Bonilla-Sierra et al., 2015). Fold axes are com-
monly weak zones, and fold geometry may influence 
failure geometry (Badger, 2002; Jaboyedoff et al., 2011; 
Humair et al., 2013). Foliation may affect sliding zone 
development (Braathen et al., 2004; Adhikary and Dys-
kin, 2007; Vick et al., 2020). The tectonic inheritance 
and in situ stress conditions of a given slope influence 
slope stability, and rock mass behaviour and damage 
(Hoek et al., 2009; Ambrosi and Crosta, 2011; Agliardi 
et al., 2013; Stead and Eberhardt, 2013; Elmo et al., 
2018). 

Inclusion of structural control analysis when study-
ing mass movements contributes to improved under-
standing of failure preconditioning, initiation and behav-
iour at various scales, and ultimately to landslide hazard 
and risk reduction. For example, Glastonbury and Fell 
(2000) and Stead et al. (2006) illustrated how structures 
affect failure mechanisms, from translational to complex 
multi-mechanism failure. Recent analysis of structural 
control within the creeping Moosfluh slope adjacent to 

the Aletsch glacier in Switzerland examines the applica-
tion of sophisticated monitoring to determine the role of 
structural control in developing failure mechanisms and 
in slope stability evolution (Glueer et al, 2019a, b; Man-
coni et al., 2019). In Troms, Norway, Vick et al. (2020) 
focus on Rock Slope Deformations (RSDs), highlighting 
the role of foliation, discontinuities, and faults in RSD 
formation and evolution and presenting a new geotech-
nical model for these failures.  

Aside from recognising the importance of structural 
control as in the above examples, incorporating tech-
niques traditionally used in structural geology into ge-
otechnical assessments of slopes facilitates analysis 
and improves slope characterisation. For example, Ha-
vaej and Stead (2016) applied the concept of the strain 
ellipsoid to brittle fracture and damage in open pit mines 
and natural slopes, determining an “ellipsoid of dam-
age”.  

The aim of this short paper is to provide a review of 
methods used to investigate the influence of structural 
geological features and processes on slope instability. 
Methods are described in the next section, followed by a 
case study highlighting the application of several of 
these methods to the famous Vajont Landslide and a 
discussion of the methods. 
 
2. METHODS 

 
Analysis of slope stability has incorporated numer-

ous techniques to improve understanding of failure 
mechanisms, including site investigations, drilling, 
groundwater, displacement and climate monitoring, geo-
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Fig. 1 - Structural features and controls (such as folds, fault zones, rock bridges, crown cracks, transverse cracks and ridges, and radial 
cracks) on landslides, with methods used to investigate them represented by icons. See Tab. 1 for legend of icons. 

Tab. 1 - Summary of methods used to investigate structural features and processes affecting slope stability. Note that field methods here 
include laboratory methods for simplicity. GSI = Geological Strength Index; JRC = Joint Roughness Coefficient; LOS = Line-of-Sight. 
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physical methods, remote sensing, and physical and 
numerical simulations. Figure 1 and Tab. 1 summarise 
the traditional and novel methods applied to the analysis 
of slope instabilities and their features, focussing on 
structural control and features, and separated into field 
methods, remote sensing and visualisation, and simula-
tion and modelling. 
 
3. CASE STUDY 
 

3.1. Background 
The Vajont Landslide is a well-known ~270 million 

m3 event that failed catastrophically on October 9th, 
1963 in the Dolomites of northern Italy, approximately 
100 km north of Venice (Fig. 2). The failure initiated on 
the southern valley wall of the Vajont Valley on the flank 
of Mt. Toc (peak at 1921 m asl), above the Vajont Dam, 
which was the highest double-arch dam in the world at 
the time of the disaster. The sudden failure caused a 
displacement wave of the Vajont Reservoir that spread 
upvalley and downvalley, overtopped the dam, and 
flooded the main Piave Valley below. Resulting in just 
under 2000 deaths, the Vajont catastrophe is cited as 
one of the worst engineering and natural disasters in 
history. The landslide is among the most researched 
slope failures in the world, with over 200 studies on its 
geological, hydrogeological, geotechnical, and social 
aspects (cf. Genevois and Ghirotti, 2005; Superchi et 
al., 2010; Paronuzzi and Bolla, 2012; Genevois and 
Tecca, 2013). Several critical aspects, such as the sig-
nificance of changing hydrological and hydrogeological 

conditions and centimetre-scale clay beds, and the ex-
istence of a “paleoslide”, have been discussed for dec-
ades (cf. Hendron and Patton, 1985; Semenza, 2010). 
Only recently have geomorphological and structural 
preconditions and regional evolution been investigated 
in relation to the Vajont Landslide. 

Several compressional deformation events shaped 
the Dolomites before and during the Late Miocene Al-
pine orogeny, including the Neoalpine and Dinaric defor-
mations. The E-W oriented Vajont Valley follows the 
Erto Syncline, an E-ESE plunging recumbent fold that 
formed during the Neoalpine event and was affected by 
the Belluno Thrust to the South and the Monte Borgá 
and Spesse thrusts to the North. The Vajont Landslide is 
located on the southern refolded limb of the Erto Syn-
cline (Ravagnan, 2011; Massironi et al., 2013). 

The recently recognised open Massalezza Syn-
cline (Massironi et al., 2013), with a fold hinge oriented 
N-S and located in the centre of the Vajont Landslide 
along the Massalezza Stream (Fig. 2), is associated with 
the Dinaric deformation event and creates the bowl 
shape observed in the landslide failure scar. Interfer-
ence patterns between the Neoalpine and Dinaric fold 
generations contribute to the complex morphology of the 
failure scar (Bistacchi et al., 2015). 

Two faults bound the Vajont Landslide. The Col 
Tramontin Fault, a sub-vertical splay of the Croda Bian-
ca reverse fault, acts as the eastern lateral release. The 
Col delle Erghene normal fault forms part of the western 
lateral and rear release of the landslide. Other faults 
surrounding the landslide include the Col delle Tosatte 

Fig. 2 - Location and context of the Vajont Landslide. 1 - Vajont Landslide failure scar, 2 - Vajont Landslide deposit, 3 - Vajont Dam, 4 - 
Pineda Landslide deposit (prehistoric failure), 5 - Col Tramontin Fault, 6 - Croda Bianca Fault, 7 - Col delle Erghene Fault, 8 - Massalezza 
Stream. (Modified after: Wolter et al., 2014.) 



   

 

reverse fault and the regionally significant Belluno flat-
ramp-flat thrust system (Massironi et al., 2013). 
 
3.2. Investigations on Structural Features and Con-
trol at Vajont 

To study the effects of the tectonic setting on fail-
ure kinematics and dynamics, engineering geological, 
structural geological, geophysical and geotechnical 
methods have been applied to the Vajont Landslide. For 
example, Bistacchi et al. (2015) constructed a 3D geo-
logical model incorporating borehole, morphological, 
and geological data to characterise damage within the 
deposit as well as tectonic structures influencing the 
failure, and Petronio et al. (2016) used P-wave, SH-
wave, and surface wave analysis to characterise the 
rock masses involved in the Vajont Landslide. Paronuzzi 
and Bolla (2015) investigated the interaction of pre-
existing tectonic discontinuities with discontinuities 
formed due to gravitational stresses within the Vajont 
Landslide area, based on discontinuity orientation. 

Wolter et al. (2014, 2015) used terrestrial photogramme-
try, engineering geomorphological analysis and map-
ping, and engineering geological field investigations to 
characterise the Vajont Landslide scar and deposit.  

Through these studies focussed on structural con-
trol, several insights have been gained. Detailed mor-
phological and structural investigations of the failure 
scar - influenced mainly by interference patterns be-
tween the two fold generations mentioned above - using 
methods such as photogrammetry, roughness charac-
terisation, and block statistics, indicated smooth and 
rough areas of the scar, with implications for where rock 
bridges and concentrated damage could have formed 
within the sliding zone (Fig. 3) (Massironi et al., 2013; 
Wolter et al., 2014). Lineament mapping shows the influ-
ence of tectonic discontinuities on the geometry of the 
failure. The roughness of the failure scar and the loca-
tions of the Col Tramontin Fault and Massalezza Syn-
cline also explain the separation of the landslide deposit 
into several blocks (e.g., Wolter et al., 2015). Continued 
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Fig. 3 - Roughness classes on the Vajont Landslide scar, based on block statistics. Class 1 represents areas that are largely planar and 
smooth, with roughness increasing to Class 4. Rougher areas are more likely to have caused dilation of the failure mass over asperities 
and/or rock bridge failure through asperities, with implications for movement behaviour. (Source: Wolter et al., 2014.) 
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evolution of the failure scar post-1963 has focussed in a 
particularly active area under a fold visible in the failure 
scar (Wolter et al., 2014).  

The Vajont Landslide deposits include areas of 
compression and extension, as indicated by morphologi-
cal features such as transverse ridges and internal 
shear zones on engineering geomorphological maps 
(Fig. 4) (Wolter et al., 2015). These deformed zones 
suggest further separation of the landslide mass into 
individual blocks, and they aid in determining the move-
ment behaviour of the catastrophic landslide. 

Numerical modelling of the Vajont Landslide, in-
cluding continuum, discontinuum, and hybrid simula-
tions, has suggested that internal damage developed 
prior to catastrophic failure at critical locations within the 
rock mass, as also observed in morphological and struc-
tural geological field investigations. Modelling suggests 
that strain concentrated within an ellipsoid of damage, 
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and certain pre-existing discontinuities likely separated 
the failure mass into several blocks (Wolter et al., 2013; 
Havaej et al., 2015). 
 
4. DISCUSSION AND CONCLUSION 

 
Numerous methods have been developed to ana-

lyse structural control on slope failures. The following 
discusses some of the caveats and limitations of meth-
ods mentioned in this paper. 

Any data collection method must be employed with 
care and expert judgement, as subsequent analysis is 
only as good as the dataset input. For example, particu-
larly when investigating structural features, structural 
domains within the study area should be considered. 
Scale of observation is also an important consideration. 
Structural geologists commonly examine features either 
at the regional or microscopic scale to determine tecton-

Fig. 4 - Morphostructural features of the Vajont Landslide deposits, showing zones of extension and compression, as well as blocks within 
the deposit. (Source: Wolter et al., 2015.) 
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ic history. Although these scales of analysis provide 
context for slope-scale investigations, meso-scale fea-
tures are often more significant to slope stability. In fact, 
slope investigations can identify previously unknown 
structures such as local folds and faults, as seen in the 
Vajont Landslide case above. 

Field (and laboratory) methods remain essential in 
assessing rock masses and discontinuities, as well as 
their role in failure kinematics and dynamics. It is only 
through these methods that properties such as material 
strength can be quantified. In recent years, using 
smartphone applications to measure discontinuity, fold, 
and foliation orientation, as well as collecting other geo-
logical data, has started to displace the use of a com-
pass. Apps allow much more efficient collection of data 
and can reduce time spent in precarious field environ-
ments. However, their precision and accuracy have 
been debated (Vanderlip, 2016; Allmendinger et al., 
2017; Lee et al., 2018; Nováková & Pavlis, 2019), and it 
is still highly recommended to check the accuracy of the 
app chosen and to calibrate apps using a compass fre-
quently (up to one in every 10 app measurements). 
Understanding the theory behind the data being collect-
ed is also important to avoid poor quality or erroneous 
data.     

Remote sensing applications allow data to be gath-
ered in otherwise inaccessible areas and over large 
areas and have become widely used to investigate and 
monitor slopes. These methods require specialised 
knowledge and awareness of their limitations, some of 
which are listed in Tab. 1. Scaioni et al. (2014), Fran-
cioni et al. (2017) and Stead et al. (2019) provide further 
review of remote sensing as applied to unstable slopes. 

Augmented and virtual reality techniques are rela-
tively new to structural geology and slope investigations. 
They have proven to be useful tools in visualising the 
often multi-layered and complex datasets gathered us-
ing other methods. Although not used to map or model 
phenomena directly yet, there are some promising de-
velopments (e.g., Mysiorek et al., 2019). 

Numerical modelling, powerful when used appro-
priately, should be seen as a conceptual tool to aid in 
understanding physical processes. Like remote sensing 
methods, numerical methods require highly specialised 
knowledge. With the increased development of user-
friendly interfaces, it is particularly important to have 
well-defined research goals, and to know the limitations 
of the approach used as well as the fundamental sci-
ence underlying each study. Stead and Wolter (2015) 
discuss numerical modelling as applied to structural 
control in slopes in more detail. 

The incorporation of Artificial Intelligence (AI), par-
ticularly machine learning, into slope stability analysis is 
a relatively new development, and has allowed for more 
efficient processing of large datasets. Landslide suscep-
tibility assessment currently applies AI most frequently. 
Studies such as Dickson & Perry (2016), who identify 
controls on coastal cliff stability using machine learning, 
and �uri� et al. (2019), using machine learning to classi-
fy slopes as stable, dormant or active in Belgrade, none-
theless show broader applications to slope stability. For 
a review of machine learning methods applied to struc-
tural geology, see Gunderson et al. (2019). 

This paper has highlighted methods applied to 
slope investigations, focussed on the characterisation of 
structural features and processes that may control slope 
instability. Although each of the methods presented pro-
vides data and can be used to gain insight into failure 
mechanisms and behaviour related to structural control, 
studies benefit greatly from using an integrated ap-
proach, combining multiple methods. This combined 
approach deepens understanding and reduces uncer-
tainty. After all, each method is simply one tool in the 
endeavour to comprehend complex natural processes. 
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