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ABSTRACT: Several paleoenvironmental analyses show that community change over geological time is driven by ecological factors 
which, in turn, are regulated by climate. To most effectively examine the origin of community change researchers need to single out and 
track specific paleobiological properties and to see how much they depend on local or more general constraints. A suite of proxies have 
been used to analyze ecologically based community change. Body size is one of the most sensitive to ecological factors and is therefore 
deemed to disclose significant information on past environmental conditions. Bergmann’s rule proposes a thermoregulatory explanation 
to the latitudinal gradient of increasing animal body size. Whereas some animals fit the predictions of Bergmann's rule, others do not, or 
even correlate negatively. Several critical reviews cast doubts on the “thermal” interpretation of Bergmann’s rule, and proposed alterna-
tive hypotheses for geographic variation in body size based on various physiological, biological and ecological constraints. The Ice Age 
cycling that was set off by the 2.6 Ma Arctic ice cap expansion led gradually to ever increasing environmental patchiness, and the effects 
of this habitat fragmentation became particularly evident in the Late Pleistocene and Holocene. Megafaunas progressively split up into 
metapopulations confined into ever smaller and more isolated habitats. This led numerous large mammals to experience endemic evolu-
tion in isolation, and body sizes changed in ways similar to those observed in land mammals distributed on true islands. 
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1. INTRODUCTION  

The processes that cause community change over 
geological time have been one of the most investigated 
topics in paleoecology. To most effectively examine the-
se processes researchers need to single out and track 
paleobiological properties unaffected by local con-
straints. Body size is most sensitive to ecological factors 
and can disclose significant information on past envi-
ronmental conditions. The pattern and extent of body 
size change in Quaternary land mammals has often 
been connected to climatic change (Tchernov, 1968; 
Davis, 1977, 1981; Klein, 1986). Quaternary is actually 
characterized by particularly unstable conditions, with 
long-term cooling trends and glacial cycles of ever in-
creasing amplitude. There are two major, relatively ab-
rupt climate transitions: one just before its onset, around 
2.7 Myr ago, of a major northern hemisphere glaciation, 
the other is the so-called “mid-Pleistocene revolution” 
(MPR; Berger & Jansen, 1994) when the dominant peri-
odicity of glacial response switched from 41 to 100 kyr. 

An equivalence can be established between the 
body size change of a specific taxon within a community 
over geological time, on the one hand, and the change of 
a phenotypic trait of an organism over geological time, on 
the other. As phenotypic changes reveal specific adapta-
tions, so can body size changes provide information on 
the environmental modifications that caused them. 

Bergmann’s rule, pros and contras 
Many studies have highlighted the coincidence of 

climate or latitude change with size changes in various 

mammals. Bergmann (1847) observed a latitudinal in-
crease in animal body size and proposed a thermoregu-
latory explanation to the phenomenon. Climate/latitude-
induced size change is often connected to peculiar al-
lometric responses. In 1877 Joel A. Allen gave the fun-
damentals of what was from then on known as Allen’s 
rule observing that land mammals from colder climates 
usually develop shorter limbs than their counterparts 
from warmer climates. Subsequently re-examined and 
reformulated, the so-called Bergmann’s rule (or mecha-
nism sensu Meiri, 2011) was found to apply also to poi-
kilotherm vertebrates, as well as to a number of inverte-
brate taxa (e.g., Ashton, 2002; Makarieva et al., 2005, 
and references therein), which however are not subject 
to the heat-conservation mechanisms underlying Berg-
mann’s rule. McLean (1991) believes that large mam-
mals store more heat than smaller mammals, but cannot 
release it as much easily owing to their relatively small 
surface/volume ratios. The rapid warming at the transi-
tion to an interglacial/interstadial phase causes greater 
embryogenesis dysfunction in larger mammals than in 
smaller ones (McLean, 1991). In these periods large 
mammals may therefore either disappear, experience 
dwarfing if they are given sufficient time to adapt to the 
new conditions, or otherwise reduce in size before be-
coming extinct (Kurtén, 1972; Guthrie, 1984). Meiri & 
Dayan (2003) reviewed the occurrence of Bergmann’s 
rule in statistical samples of birds and mammals, ob-
serving that over 72% of the birds and 65% of the 
mammals they examined conform to it. Meiri et al. 
(2007) revised these results finding that the mean varia-
tion explained by latitude is 35% for birds and 37% for 
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mammals. Meiri & Dayan (2003) had also found that 
birds tend to adhere to Bergmann’s rule whatever their 
size, while smaller mammals (<500 g) conform signifi-
cantly less than larger ones. The latter observation is 
consistent with the conclusions drawn by McDonald 
(1984), Martin (1984), Merilees (1984), and Ashton et al. 

(2000), who found that large land mammals had been 
more sensitive to the climatic oscillations than smaller 
ones. Meiri et al. (2004) obtained a significantly positive 
correlation between skull length and latitude in 50% of 
44 carnivore species they examined, and a significantly 
negative correlation in 11% of those species. Diniz-Filho 

 
Fig. 1 - Curve through estimated average weights of Western European hippopotamuses, obtained from odontometric and osteometric 
data, as well as by using allometric scaling techniques (analysis in progress by the writers). Stratigraphic scheme modified from Bertini et 
al. (2010). 
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et al. (2007) have also analyzed patterns of body size 
geographic variation in European carnivores. Rodríguez 
et al. (2006) observed nonlinear relationships between 
body size and temperature, finding a strong association 
in northern Europe, and virtually none in the south. Kur-
tén (1968) and Huston & Wolverton (2011) propose the 
idea that mammal size is primarily connected with the 
amount and nature of food resources. Barnosky (2005) 
actually showed that most body-size reductions at the 
last glacial/interglacial transition were ecophenotypic 
rather than genotypic changes. Teplitsky et al. (2008) 
reached similar conclusions. In the light of these results, 
many authors have cast doubt on the “thermal” interpre-
tation of Bergmann’s rule, finding that body size is con-
trolled by many other factors rather than just tempera-
ture. Some authors advocate various physiological, bio-
logical and ecological constraints [(1) vascular control 
and fur insulation (Scholander 1955; Steudel et al., 
1994); (2) food availability (Huston & Wolverton, 2011); 

(3) basal metabolic rate (Steudel et al., 1994); (4) ener-
gy costs (Thompson, 1942); (5) size and nature of food 
(Teplitsky et al., 2008); (6) dominance in a community 
(Hansson & Jaarola, 1989); (7) competition (Simberloff 
& Boecklen, 1981); (8) mating success (Lande & Arnold, 
1983)]. Others suggest additional climatic factors, such 
as moisture levels, demonstrating that small body size is 
associated with hot and humid conditions while larger 
size is connected to cooler and drier circumstances 
(Rosenzweig, 1968; James, 1970). Yom-Tov & Nix 
(1986) and Yom-Tov & Geffen (2006) observed that 
body size correlates with moisture and precipitation, and 
thus with primary production, better than with tempera-
ture. Blois & Hadly (2009) linked body sizes to climate-
change-related responses of vegetation and primary 
productivity. During the last decade, a wealth of studies 
analyzed the empirical validity of ecogeographic rules 
(Blackburn & Gaston, 1998; Blackburn et al., 1999; 
Angilletta & Dunham, 2003; Cruz et al., 2005; Millien et 

Species  
and specimens  Ortona Colle  

Lepre Valdarno Colle 
Curti Untermaßfeld 

H. gr. H. an-
tiquus (= H. 
tiberinus) 

Incarcal I 
H. amphibius 
(Barrington 
included) 

upper M2  
(Janis, 1990) 

length x 
breadth (cm) 28.75 30.66

log 1.46 1.48

min length x 
breadth (cm) 22.56 25.3 23.04 18.49

log 1.35 1.4 1.36 1.26

max length x 
breadth (cm)     30.24 30.36  34.16   32.48

lower M2  
(Janis, 1990) 

length (cm) 5,48 

log 0.74 6.32 

min length 
(cm) 5 6.6 5.2 0.8 

log 0.7 0.82 0.71 

max length 
(cm) 6.4 7 5.9 

log     0.8 0.84  0.77    

Femur (allometric  
scaling: Schmidt-

Nielsen, 1984; Reitz 
and Quitmyer, 1988; 
Prange et al., 1979) 

DC (cm) 9.5 11.7

log 0.98 1.07

DC min (cm) 9.5 9.5 8.7 7.4

log 0.98 0.98 0.94 0.87

DC max (cm) 10.8 10.2 9.3 8.6

log     1.03 1.01  0.97   0.93

Fifth metatarsal  
(allometric scaling: 
Schmidt-Nielsen, 
1984; Reitz and  
Quitmyer, 1988; 

Prange et al., 1979) 

length (cm) 9.92 9.3 

log 0.99 0.97 

min length 
(cm) 9.5 10 9.9 10.3 

log 0.98 1.00 0.99 1.01 

max length 
(cm) 11 10.7 10.8 10.9 

log     1.04 1.03 1.03 1.04    

estimated weights 
(kg)   

1000-
2100 2200 2100-2750 2100-

2600 2200-3200 1700-2750 2000 1260-3000

Tab. 1 - Body weight estimates 
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al., 2006; Rodríguez et al., 2006, 2007; Gaston et al., 
2007; Meiri & Gavin, 2007; Meiri et al., 2007; Aragón et 
al., 2010; Gardner et al., 2011). Many of these factors 
suggested as alternatives to Bergmann’s rule could be 
more or less directly correlated, or at least influenced, 
by the environmental and climatic changes that oc-
curred over the last 2 million years. Quaternary climate 
instability caused changes in the vegetation (e.g., Lang, 
1994; Bertini, 2003, 2010; Tzedakis, 2003, 2007; Gon-
zález-Sampériz et al., 2010; Rodriguez-Sanchez et al., 
2010; Joannin et al., 2011; Magri & Palombo, 2012), as 
well as the progressive fragmentation of the ecosys-
tems, with consequences on the fauna that are de-
scribed further on. 

2. BODY SIZE CHANGE IN QUATERNARY HIPPO-
POTAMUSES: A WESTERN EUROPEAN EXAMPLE 

In Western Europe, the significant changes in 
temperature and precipitation ensuing from the maxi-
mum expansion of the Arctic ice cap that set off the Ice 
Age cycling caused the progressive demise of tropical 
and subtropical forest taxa, while altitudinal arboreal 
taxa and herbs spread, with the creation of new compe-
tition patterns (e.g., Suc et al., 1995; Bertini, 2010, Ber-
tini et al., 2010; Fig. 1). Vegetational modifications clear-
ly reflect substantial paleoecological and paleoclimatic 
reorganizations. Most commonly, but not exclusively 
(e.g., Bertini, 2010), Artemisia and Ephedra-dominated 
open vegetation alternated with interglacial forests 
characterized by deciduous taxa, such as Quercus, 
Carya, Carpinus, Pterocarya, Ulmus and Zelkova in re-
sponse to the Early Pleistocene 41 kyr climatic cycling. 
A ca. 100 kyr (eccentricity) cycling, which started since 
the transition to the Middle Pleistocene, intensified the 
glacial phenomena, but also seasonality and aridity. 
This had disrupting consequences on both flora and 
fauna. Many resident animal taxa became extinct, 
whereas others were replaced by new incomers from 
eastern Europe, central Asia, and Africa. Some of the 
Western European inhabitants seem to have changed 
size in coincidence with climatic variations. Hippopota-
muses might represent a good example (Fig.1). If the 
body sizes of European Quaternary hippopotamus are 
estimated from stratigraphically controlled remains, it 
seems that these pachyderms grew smaller from the 
Jaramillo subchron onwards (Table 1). During the se-
cond half of the Middle Pleistocene these suiforms 
turned progressively rarer, especially during the coldest 
phases of this interval (MIS 8, 6). At the beginning of the 
Late Pleistocene, during the very warm MIS 5e, large to 
very large hippopotamuses dispersed as far north as the 
British Isles. It is worth noting that Western European 
hippopotamuses grew smaller in coincidence with the 
MPR (~1.2÷0.5 Ma) and just after the disappearance of 
the subtropical vegetal ecosystems from the Mediterra-
nean area, around 1.2 Ma (e.g. Combourieu-Nebout & 
Vergnaud-Grazzini, 1991; Bertini, 2010). The great 
modifications in the structure and composition of vegetal 
formations induced by the long lasting glacial phases 
(up to 85 ka) and short interglacial phases (up to 15 ka) 
of this time period had significant consequences on the 
type and availability of food for the fauna. In a working 
hypothesis in preparation by the writers, hippopotamus-

es turned smaller under the prevalently cooler Middle 
Pleistocene conditions, in contrast to Bergmann’s predict-
ed pattern, as an indirect response to climatic change, 
owing to the unsteadiness in food availability. This would 
fully agree with Kurtén’s (1968) and Huston & Wolverton’s 
(2011) idea that mammal size is primarily connected with 
the amount and nature of food resources.  

3. THE “INSULARIZATION” OF QUATERNARY CON-
TINENTAL MAMMALS  

The MPR caused increasing habitat fragmentation 
(Simakova, 2001; Markova et al., 2001; Zazula et al., 
2003), whose effects became particularly evident in the 
Late Pleistocene and Holocene. The mosaic evolution of 
plant communities, as habitats grew smaller and more 
isolated, turning into habitat islands (Lister & Bahn, 
1994; Ward, 1997; Reumer, 2007), affected the evolu-
tionnary relationships between herbivores and the vege-
tation (Graham & Lundelius, 1984). Megafaunas pro-
gressively broke down into metapopulations. 

As interbreeding became ever more infrequent, 
subpopulations were increasingly exposed to the effects 
of inbreeding, genetic drift as well as morphological 
change. When the intensity of interbreeding turned ex-
cessively low, evolutionary change tended to resemble 
that of insular settings (Schmidt & Jensen, 2003). Numer-
ous mammals grew smaller (e.g., edentates, mastodonts, 
wild boar, gazelle, goat, aurochs, bison, deer, fox, wildcat, 
spotted hyena, beech marten, burrowing mole rat, 
hedgehog, porcupine: Kurtén, 1965; Tchernov, 1968; 
Frenkel, 1970; Heller, 1970; McDonald, 1981; King & 
Saunders, 1984; Martin, 1993; Martin & Barnosky 1993; 
Wilson, 1996; Barnosky et al., 2003; Blackburn & Haw-
kins, 2004, Rodríguez et al., 2006, Cooper & Purvis, 
2010; Saunders et al., 2010), with results somewhat fitting 
the predictions of the so-called Island Rule (Foster, 1964; 
Sondaar, 1977). Insular populations, both in true and eco-
logical islands, are in fact under the control of strict genet-
ic and ecological constraints (Lomolino et al., 2010).  

As in true islands, in isolated ecosystems popula-
tion densities are bracketed between a maximum 
number of individuals, determined by the carrying ca-
pacity of the environment, and a critical minimum 
number of individuals to prevent extinction. Large-
sized animals seems to be left with no other choice but 
to decrease their size to lower selective pressure in 
insular isolation. 

4. CONCLUSIONS 

Because mammal body size is most sensitive to 
ecological factors, size changes are often considered as a 
useful proxy indicator to monitor climatic changes, not 
only in the past. In fact, declining body size has recently 
been considered the third universal response to climate, 
together with changes in phenology and distribution of 
species (Gardner et al., 2011). In his pioneer contribution 
Bergmann (1847) stirred debate over the relation be-
tween temperature and body size. The controversy 
peaked over the years, with convinced supporters and 
opponents both with shrill and convincing arguments on 
the merits or shortcomings of Bergmann’s rule. Many 
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studies have admirably shown that mammalian body size 
is governed by, and responds to, a number of factors, 
which include temperature, precipitation and moisture, 
physiologic constraints, basal metabolic rate and energy 
costs, environmental carrying capacity (food availability), 
degrees of environmental stability, interspecific com-
petition, predator-prey interaction, just to mention some. A 
body size that is thought to be diagnostic of a particular 
environmental situation may actually arise for different 
reasons, being the result of the interplay of an array of 
factors which may be, to various degrees, interdependent. 
Researchers involved with these issues are therefore 
confronted with a tangled network of related variables, 
which imposes to inquire each instance individually, on a 
case-by-case basis: model (“Rule”) generalization is not 
easy to achieve. Today, researchers could have the un-
precedented opportunity to test the effects of global 
warming on fast-reproducing animals (e.g., Gardner et al., 
2011). Paleoclimatological analysis and oxygen isotope 
curves clearly show that, with the outstanding exceptions 
of particularly warm episodes (e.g., MIS 47, 37, 11, 9, 5e), 
Earth’s climate has been progressively deteriorating over 
time, trending towards increasingly cooler and somewhat 
drier conditions. The escalating environmental patchiness 
during the Quaternary translated into habitat fragmenta-
tion, and this in turn caused the splitting up of populations 
into subpopulations or metapopulations. Owing to this 
parcelling of habitats and biotas, body size has been ever 
more under the influence of factors (e.g., food availability) 
that may not always operate or be accessible latitudinally, 
but rather areally, in accordance with the habitat specifici-
ty of the species (Meiri et al., 2007). Countless studies 
show that mammal body size change is a most effective 
sign of some ecological change, of whatever kind and 
degree (Aragon et al., 2010). And possibly even a predic-
tor of environmental instability. Deepening our knowledge 
and understanding of this phenomenon can therefore be 
a promising direction for future research aimed at envi-
ronmental monitoring.  
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